
Answer Set Programming:
A Declarative Approach to Solving
Challenging Search Problems
Ilkka Niemelä
Department of Information and Computer Science
School of Science
Aalto University
Ilkka.Niemela@aalto.fi

TKT-päivät 2011
2/46

Answer Set Programming (ASP)

I Basic principles outlined in the late 1990s
I Now well represented at research conferences and

workshops (IJCAI, AAAI, ECAI, KR, . . .)
I Competitive implementations available
I Growing number of applications
I An approach to modeling and solving knowledge

intensive search problems with defaults, exceptions,
definitions:
planning, configuration, model checking, network
management, linguistics, bioinformatics, combinatorics, . . .

TKT-päivät 2011
3/46

Content

I Introduction to Answer Set Programming (ASP)
I Stable Model Semantics
I Solving Problems with ASP
I ASP Solver Technology
I Systems, Applications, Literature

TKT-päivät 2011
4/46

Part I

Introduction to ASP

TKT-päivät 2011
5/46

Answer Set Programming

I Term coined by Vladimir Lifschitz in the late 1990s.
I Roots: KR, logic programming, nonmonotonic reasoning.
I Based on some formal system with semantics that assigns

a theory a collection of answer sets (models).
I An ASP solver: computes answer sets for a theory.
I Solving a problem in ASP:

Encode the problem as a theory such that solutions to the
problem are given by answer sets of the theory.

TKT-päivät 2011
6/46

ASP—cont’d

I Solving a problem using ASP

Problem
−→

instance
Encoding

Theory
−→

ASP
solver

Models
−→

(Solutions)

I Possible formal system Models
Propositional logic Truth assignments
CSP Variable assignments
Logic programs Stable models
Model expansion First-order structures

TKT-päivät 2011
7/46

Example. k -coloring problem with SAT
I Given a graph (V ,E) find an assignment of one of k colors

to each vertex such that no two adjacent vertices share a
color.

I Encoding 3-coloring using propositional logic
I For each vertex v ∈ V include the clauses:

v1 ∨ v2 ∨ v3
¬v1 ∨ ¬v2
¬v1 ∨ ¬v3
¬v2 ∨ ¬v3

I and for each edge (v ,u) ∈ E the clauses:
¬v1 ∨ ¬u1
¬v2 ∨ ¬u2
¬v3 ∨ ¬u3

I 3-colorings of a graph (V ,E) and models of the encoding
correspond: vertex v colored with color i iff vi true in a
model.

TKT-päivät 2011
8/46

ASP Using Logic Programs

I Uniform encoding:
separate problem specification and data

I Compact, easily maintainable representation
I Integrating KR, DB, and search techniques
I Handling dynamic, knowledge intensive applications:

data, frame axioms, exceptions, defaults, closures,
inductive definitions

Problem
−→ ENCODING

Data
−→ ENCODING

Theory
−→

ASP
solver

Models
−→

(Solutions)

TKT-päivät 2011
9/46

Coloring Problem (Uniform Encoding)

% Problem encoding

1 { colored(V,C):color(C) } 1 :- vtx(V).

:- edge(V,U), color(C), colored(V,C), colored(U,C).

% Data

vtx(a). ...

edge(a,b). ...

color(r). color(g). ...

+ Legal colorings of the graph given as data and stable
models of the problem encoding and data correspond:
a vertex v colored with a color c iff colored(v , c) holds in a
stable model.

TKT-päivät 2011
10/46

What is ASP Good for?

Knowledge intensive search problems with defaults,
exceptions, inductive definitions:

I Constraint satisfaction
I Planning, routing
I Computer-aided verification
I Security analysis
I Linguistics
I Network management
I Product configuration
I Combinatorics
I Diagnosis

TKT-päivät 2011
11/46

Roots of ASP

I Logic programming: framework for merging KR, DB, and
search

I PROLOG style logic programming systems not directly
suitable for ASP:

I search for proofs (not models) and produce answer
substitutions

I not entirely declarative
I In late 80s new semantical basis for “negation-as-failure” in

LPs based on nonmonotonic logics: Stable model
semantics [Gelfond and Lifschitz 1988]

TKT-päivät 2011
12/46

Roots of ASP

I Implementations of stable model semantics led to ASP
I Smodels [N. and Simons 1996]

I Basic ASP principles
I V.W. Marek and M. Truszczynski. Stable models and an

alternative logic programming paradigm. The Logic
Programming Paradigm: a 25-Year Perspective, pages
375-398. Springer, Berlin, 1999.

I I. N. Logic programs with stable model semantics as a
constraint programming paradigm. Annals of Mathematics
and Artificial Intelligence, 25(3,4):241-273, 1999.

I The term ASP coined by V. Lifschitz in 1999

TKT-päivät 2011
13/46

Part II

Stable Model Semantics

TKT-päivät 2011
14/46

LPs with Stable Models Semantics

I Consider first normal logic program rules

A← B1, . . . ,Bm,not C1, . . . ,not Cn

I Seen as constraints on an answer set (stable model):
I if B1, . . . ,Bm are in the set and
I none of C1, . . . ,Cn is included,

then A must be included in the set
I A stable model is a set of atoms

(i) which satisfies the rules and
(ii) where each atom is justified by the rules
(negation by default; CWA)

TKT-päivät 2011
15/46

Stable Models — cont’d

I Program:
b ←
f ← b,not eb
eb ← p

Stable model:
{b, f}

I Another candidate model: {b,eb}
satisfies the rules but is not a proper stable model:
eb is included for no reason.

I Justifiability of stable models is captured by the notion of a
reduct of a program.

+ The stable model semantics [Gelfond/Lifschitz,1988].

TKT-päivät 2011
16/46

Definite Programs

I For the reduct we need to consider first definite programs,
i.e. normal programs without negation (not).

I Such a program P has a unique least model LM(P)
satisfying the rules.

I LM(P) can be constructed, e.g., by forward chaining.

Examples.
P1 :

p ←
q ← p
LM(P1) = {p,q}

P2 :

p ← q
q ← p
LM(P2) = {}

P3 :

p ← q
q ← p
p ←
LM(P2) = {p,q}

TKT-päivät 2011
17/46

Stable Models — cont’d

I Consider the propositional (variable free) case:
P — ground program
S — set of ground atoms

I Reduct PS (Gelfond-Lifschitz)
I delete each rule having a body literal not C with C ∈ S
I remove all negative body literals from the remaining rules

I PS is a definite program (and has a unique least model
LM(PS))

I S is a stable model of P iff S = LM(PS).

TKT-päivät 2011
18/46

Example. Stable models

S P PS LM(PS)

{b, f} b ← b ← {b, f}
f ← b,not eb f ← b
eb ← p eb ← p

{b,eb} b ← b ← {b}
f ← b,not eb
eb ← p eb ← p

I The set {b,eb} is not a stable model of P but
{b, f} is the (unique) stable model of P

TKT-päivät 2011
19/46

Example. Stable models

I A program can have none, one, or multiple stable models.
I Program:

p ← not q
q ← not p

Two stable models:
{p}
{q}

I Program:
p ← not p

No stable models

TKT-päivät 2011
20/46

Programs with variables

I Variables are needed for uniform encodings
I Semantics: Herbrand models
I A rule is seen as a shorthand for the set of its ground

instantiations over the Herbrand universe of the program
I The Herbrand universe is the set of terms built from the

constants and functions in the program

TKT-päivät 2011
21/46

Example. Programs with variables
I For the program P:

edge(1,2).

edge(1,3).

edge(2,4).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

The Herbrand universe is { 1,2,3,4 }.
I Hence, the rule path(X,Y) :- edge(X,Y). in P represents

the set of ground instantiations:
path(1,1) :- edge(1,1).

path(1,2) :- edge(1,2).

path(2,1) :- edge(2,1).

path(2,2) :- edge(2,2).

path(1,3) :- edge(1,3).

...

TKT-päivät 2011
22/46

Stable Models — cont’d

I A stratified program (no recursion through negation) has a
unique stable model (canonical model).

I It is linear time to check whether a set of atoms is a
stable model of a ground program.

I It is NP-complete to decide whether a ground program
has a stable model.

I Normal programs (without function symbols) give a
uniform encoding to every NP search problem.

TKT-päivät 2011
23/46

Extensions to Normal Programs

I An integrity constraint is a rule without a head:

← B1, . . . ,Bm,not C1, . . . ,not Cn

I It can be seen as a shorthand for

F ← not F ,B1, . . . ,Bm,not C1, . . . ,not Cn

I and it eliminates stable models where the body
B1, . . . ,Bm,not C1, . . . ,not Cn is satisfied.

I Classical negation
can be handled by normal programs (renaming):

p ← not ¬p corresponds to p ← not p′

← p,p′

TKT-päivät 2011
24/46

Extensions to Normal Programs
I Encoding of choices

I A key point in ASP
I Choices can be encoded using normal rules with

unstratified negation

a← not a′,b,not c
a′ ← not a

I Choice rules, however, provide a much more intuitive
encoding:

{a} ← b,not c

I Disjunctive rules: a ∨ a′ ← b,not c
I Higher expressivity and complexity (Σp

2)
I Special purpose implementations (dlv,claspD)
I Can be implemented also using an ASP solver for normal

programs as the core engine (GnT)

TKT-päivät 2011
25/46

Extensions — cont’d

I Many extensions implemented using an ASP solver as the
core engine:

I preferences
I nested logic programs
I circumscription, planning, diagnosis, . . .
I HEX-programs
I DL-programs

I Aggregates (count, sum, . . .)
I Optimization
I Function symbols
I Built-in predicates and functions:

nextstate(Y,X) :- time(X), time(Y), Y = X + 1.

TKT-päivät 2011
26/46

Example. Rules in lparse

I Cardinality constraints
2 { hd_1,...,hd_n } 4

I Weight constraints
200 [hd_1 = 60,...,hd_n = 130]

A.k.a. pseudo-Boolean constraints:

60hd1 + · · ·+ 130hdn ≥ 200

I Optimization
minimize [hd_1 = 100,...,hd_n = 180].

I Conditional literals:
expressing sets in cardinality and weight constraints
1 {colored(V,C):color(C)} 1 :- vtx(V).

TKT-päivät 2011
27/46

Part III

Solving Problems using ASP

TKT-päivät 2011
28/46

Programming Methodology

I Uniform encodings: separate data and problem encoding
I Basic methodology: generate and test

I Generator rules: provide candidate answer sets
(typically encoded using choice constructs)

I Tester rules: eliminate non-valid candidates
(typically encoded using integrity constraints)

I Optimization statements: Criteria for preferred answer
sets (typically using cost functions)

TKT-päivät 2011
29/46

Example: Coloring
% Problem encoding

% Generator rule

1 {colored(V,C):color(C)} 1 :- vtx(V).

% Tester rule

:- edge(V,U), color(C), colored(V,C), colored(U,C).

% Optimization statement

minimize {colored(V,r):vtx(V)}.

% Data

vtx(a). ...

edge(a,b). ...

color(r). color(g). ...

TKT-päivät 2011
30/46

Example: Review assignment

% Data

reviewer(r1),...

paper(p1), ...

classA(r1,p1), ... % Preferred papers

classB(r1,p2), ... % Doable papers

coi(r1,p3), ... % Conflicts of interest

% Problem encoding

% Generator rule

% Each paper is assigned 3 reviewers

3 { assigned(P,R):reviewer(R) } 3 :- paper(P).

TKT-päivät 2011
31/46

Review Assignment — cont’d

% Tester rules

% No paper assigned to a reviewer with coi

:- assigned(P,R), coi(R,P).

% No reviewer has an unwanted paper.

:- paper(P), reviewer(R),

assigned(P,R), not classA(R,P), not classB(R,P).

% No reviewer has more than 8 papers

:- 9 { assigned(P,R): paper(P) }, reviewer(R).

% Each reviewer has at least 7 papers

:- { assigned(P,R): paper(P) } 6, reviewer(R).

% No reviewer has more than 2 classB papers

:- 3 { assignedB(P1,R): paper(P1) }, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

% Minimize the number of classB papers

minimize [assignedB(P,R):paper(P):reviewer(R)].

TKT-päivät 2011
32/46

Fixed Points
I The stable model semantics captures inherently minimal

fixed points enabling compact encodings of closures and
inductive definitions

I Example. Reachability from node s.

r(s).

r(V) :- edge(U,V), r(U).

edge(a,b). ...

I The program captures reachability:
it has a unique stable model S s.t. v is reachable from s iff
r(v) ∈ S.

I Example. Transitive closure of a relation q(X ,Y)

t(X,Y) :- q(X,Y).

t(X,Y) :- q(X,Z), t(Z,Y).

TKT-päivät 2011
33/46

ASP vs Other Approaches

I SAT, CSP, (M)IP
I Similarities: search for models (assignments to variables)

satisfying a set of constraints.
I Differences: no logical variables, fixed points, database,

DDB or KR techniques available, search space given by
variable domains.

I LP, CLP:
I Similarities: database and DDB techniques.
I Differences: Search for proofs (not models),

non-declarative features.

TKT-päivät 2011
34/46

Part IV

ASP Solver Technology

TKT-päivät 2011
35/46

ASP Solvers

I ASP solvers need to handle two challenging tasks
I complex data
I search

I The approach has been to use
I logic programming and deductive data base

techniques for the former
I SAT/CSP related search techniques for the latter

I In the current systems: separation of concerns

+ A two level architecture

TKT-päivät 2011
36/46

Architecture of ASP Solvers

Typically a two level architecture employed
I Grounding step handles complex data:

I Given program P with variables, generate a set of ground
instances of the rules which preserves the models.

I LP and DDB techniques employed.
I Model search for ground programs:

I Special-purpose search procedures
I Exploiting SAT/SMT solver technology

TKT-päivät 2011
37/46

Typical ASP System Tool Chain

program
(variables)→

Grounder → ground
program→

Model
finder → stable

models

I Grounder:
I (deductive) DB techniques
I built-in predicates/functions (e.g. arithmetic)
I function symbols

I Model finder:
I SAT technology (propagation, conflict driven clause

learning)
I Special propagation rules for rules
I Support for cardinality and weight constraints and

optimization built-in

TKT-päivät 2011
38/46

SAT and ASP

I ASP systems have much more expressive modelling
languages than SAT: variables, built-ins, aggregates,
optimization

I For model finding for ground normal programs results carry
over: efficient unit propagation techniques, conflict driven
learning, backjumping, restarting, . . .

I ASP model finders have special (unfounded set based)
propagation rules for recursive rules

I ASP model finders have built-in support for aggregates
(cardinality and weight constraints) and optimization

I One pass compact translations to SAT and SMT available:
progress in SAT and SMT solver technology can also be
exploited directly in ASP model finding.

TKT-päivät 2011
39/46

Part V

Systems, Applications, Literature

TKT-päivät 2011
40/46

Some ASP Systems

Grounders:
dlv http://www.dbai.tuwien.ac.at/proj/dlv/

gringo http://potassco.sourceforge.net/

lparse http://www.tcs.hut.fi/Software/smodels/

XASP with XSB http://xsb.sourceforge.net

Model finders (disjunctive programs):
claspD http://potassco.sourceforge.net/

dlv http://www.dbai.tuwien.ac.at/proj/dlv/

GnT http://www.tcs.hut.fi/Software/gnt/

http://www.dbai.tuwien.ac.at/proj/dlv/
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://xsb.sourceforge.net
http://potassco.sourceforge.net/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/gnt/

TKT-päivät 2011
41/46

Some ASP Systems

Model finders (non-disjunctive programs):
ASSAT http://assat.cs.ust.hk/

clasp http://potassco.sourceforge.net/

CMODELS http://userweb.cs.utexas.edu/users/tag/cmodels/

LP2DIFF http://www.tcs.hut.fi/Software/lp2diff/

LP2SAT http://www.tcs.hut.fi/Software/lp2sat/

Smodels http://www.tcs.hut.fi/Software/smodels/

SUP http://userweb.cs.utexas.edu/users/tag/sup/

I For systems, performance, benchmarks, and examples,
see for instance the latest ASP competition:
http://dtai.cs.kuleuven.be/events/ASP-competition/

http://assat.cs.ust.hk/
http://potassco.sourceforge.net/
http://userweb.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/lp2diff/
http://www.tcs.hut.fi/Software/lp2sat/
http://www.tcs.hut.fi/Software/smodels/
http://userweb.cs.utexas.edu/users/tag/sup/
http://dtai.cs.kuleuven.be/events/ASP-competition/

TKT-päivät 2011
42/46

Applications

I Planning
For example, USAdvisor project at Texas Tech:
A decision support system for the flight controllers of space
shuttles

I Product configuration
–Intelligent software configurator for Debian/Linux
–WeCoTin project (Web Configuration Technology)
–Spin-off (http://www.variantum.com/)

I Computer-aided verification
–Partial order methods
–Bounded model checking

http://www.variantum.com/

TKT-päivät 2011
43/46

Applications—cont’d

I Data and information Integration
I Semantic web reasoning
I Team building at Gioia Tauro Seaport
I Repairing large-scale biological networks
I ASP-based music composition system (anton-demo.wav)
I VLSI routing, planning, combinatorial problems, network

management, network security, security protocol analysis,
linguistics . . .

I WASP Showcase Collection
http://www.kr.tuwien.ac.at/research/projects/WASP/

showcase.html

anton-demo.wav
http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html
http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html

TKT-päivät 2011
44/46

Some Literature

I C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003.

I V. Lifschitz. Foundations of Logic Programming.
http://www.cs.utexas.edu/~vl/papers/flp.ps

I V. Lifschitz. Introduction to Answer Set Programming.
http://www.cs.utexas.edu/~vl/papers/esslli.ps

I T. Eiter, G. Ianni, and T. Krennwallner. A Primer on Answer
Set Programming. http://www.kr.tuwien.ac.at/staff/
tkren/pub/2009/rw2009-asp.pdf

http://www.cs.utexas.edu/~vl/papers/flp.ps
http://www.cs.utexas.edu/~vl/papers/esslli.ps
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf

TKT-päivät 2011
45/46

Conclusions

ASP = KR + DB + search
I ASP emerging as a viable KR tool
I Efficient implementations under development
I Expanding functionality and ease of use
I Growing range of applications

TKT-päivät 2011
46/46

Topics for Further Research

I Intelligent grounding
I Model computation without full grounding
I Program transformations, optimizations
I Model search
I Distributed and parallel implementation techniques
I Language extensions
I Programming methodology
I Testing techniques
I Tool support: debuggers, IDEs

	Introduction to ASP
	Stable Model Semantics
	Solving Problems using ASP
	ASP Solver Technology
	Systems, Applications, Literature

