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MULTIRESOLUTION DATA
� Multiresolution data arise when an object or a phenomenon is

described at several levels of detail
� Multiresolution data is prevalent in many application areas
F Examples include biology, computer vision
� Faster growth of multiresolution data is expected in future
� Over the years, data accumulates in multiple resolutions because
F Older Generation Technology⇒ Data in Coarse Resolution
F Newer Generation Technology⇒ Data in Fine Resolution
� How to analyze data in multiple resolutions i.e. dimensions?

MERGING OF MIXTURE COMPONENTS

Model in Resolution 1
Model in Resolution 2

Components 
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Merge the mixture components as:

πmerged =
πklmin,1 + πklmin,2+...+ πklmin,n

n

Merge the parameters according to the weight
of component distributions:
Θmerged =

πklmin,1 × Θklmin,1 + πklmin,2 × Θklmin,2+...+ πklmin,n × Θklmin,n
πklmin,n +πklmin,2+...+πklmin,n

Normalize the components in the model as:
πj =

πj

∑J
j=1 πj

SAMPLING OF MODEL PARAMETERS

The model parameters denote the regions of chromosome. The unchanged chro-
mosomal regions across different resolutions are not altered. The regions with
changes from the coarse resolution and downsampled from the fine resolution
according to the division of the chromosomal regions across different resolutions.

KULLBACK LEIBLER DIVERGENCE IN MIXTURE MODEL
In a mixture model, the KL divergence between two mixture components can be derived to
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We derive data driven approximation of KL divergence in two models in different resolutions:
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APPROXIMATIONS USED
� Dropping the log-term : log 0

0 ≈ 0
� Using only unique samples in the data instead

of full state-space
�Approximating state-space by unique samples

X∗ = {x∗ : x∗ ∈ X} provides data driven
approach of approximation of KL divergence

PERFORMANCE OF MULTIRESOLUTION MODELS

Coarse Data

Fine Data

Multiresolution model is considerably better than single resolution model.
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