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Biological systems are complex and measurements in biology are made with
high throughput and high resolution techniques often resulting in data in mul-
tiple resolutions. Furthermore, ISCN [1] has defined five different resolutions of
the chromosome band. Currently, available standard algorithms can only handle
data in one resolution at a time. Hence, transformation of the data to the same
resolution is inevitable before the data can be fed to the algorithm. Furthermore,
comparing the results of an algorithm on data in different resolutions can pro-
duce interesting results which aids in determining suitable resolution of data. In
addition, experiments in different resolutions can be helpful in determining the
appropriate resolution for computational methods.

In this thesis, one method for upsampling and three different methods of down-
sampling 0-1 data are proposed, implemented and experiments are performed on
different resolutions. Suitability of the proposed methods are validated and the
results are compared across different resolutions. The proposed methods produce
plausible results showing that the significant patterns in the data are retained in
the transformed resolution. Thereafter, the mixture models are trained on the
data original data and the results are analyzed. However, machine learning meth-
ods such as mixture models require high amounts of data to produce plausible
results. Therefore, the major aim of the data transformation procedure was the
integration of databases. Hence, two different datasets available in two different
resolutions were integrated after transforming them to a single resolution and
mixture models were trained on them. Trained models can be used to classify
cancers and cluster the data. The results on integrated data showed significant
improvements compared with the data in the original resolution.

Keywords: mixture models, multiresolution data, 0-1 data, model selection, cross-
validation, chromosomal aberration, upsampling, downsampling, cancer genetics.
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Chapter 1

Introduction

“ Science these days has basically turned into a

data-management problem. ”— Jimmy Lin

Associate Professor, University of Maryland

1.1 Machine Learning in Cancer Research

Cancer

Cancer (Medically: Malignant Neoplasm ) is a disease characterized by the

abnormal and uncontrolled growth of cells; their ability to migrate to other

parts of human body and destroy the neighboring cells and tissues [3]. The

lack of proper care can be fatal in cancer cases. Consider, for example, some

statistics: cancer caused 7.4 million deaths worldwide (13% of the total deaths)

in 2004 [4]. In the United States, cancer accounted for 0.56 million deaths

(23.1% of all deaths) in 2005 [5]. Finland also has a high number of cancer

cases; 26,279 new cancer cases were reported in 2007, by 2015 it is expected

to reach 30,000 [6]. It is estimated that more than one-third of the population

will develop some form of cancer during their lifetime. Cancers can appear at

any age but is more common in the older population. As people have started

living longer, the problems with cancer is bound to increase in the near future.

As a result of the appalling effect of cancer and their growing rate, cancer is
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Chapter 1. Introduction

highly researched through diversified aspects and areas.

Ever since the concept of Evidence based medicine was promulgated in the

early 1960s by a Scottish Professor Archie Cochrane [7] in his book “Effec-

tiveness and Efficiency: Random Reflections on Health Services”, a variety of

different engineering tools and techniques have been used in medicine. Sev-

eral ICT (Information and Communication Technologies) and computational

methods such as Telemedicine, Medical imaging, Electronic Patients records

have already been deployed with excellent results in hospitals and medical

centers. Recently, there has been tremendous improvements in technology es-

pecially in hardware and software related to computers. Computers also have

increased processing speed and storage space. Furthermore, ultramodern com-

puter architecture, and improved communication and Internet have increased

the ease of manipulation and sharing of data and resources among different

communities and regions. Thus, data related to diseases, such as cancer, is

efficiently stored and readily available.

On the other hand, biological systems are very complex. Technology has

not only enabled storage of data, it has also provided means to study the

complex biological system. Microarray technology, such as CGH (Compar-

ative Genomic Hybridization) [8] and aCGH (Array Comparative Genomic

Hybridization) [9] offer the facilities to study the genomes and the genes in hu-

man. CGH is one of the molecular techniques to survey the DNA copy number

variation across the whole genome. In CGH experiment, differentially labeled

test and reference genomic DNA (Deoxyribonucleic Acid) are cohybridized to

normal metaphase chromosomes. Fluorescence ratios along the length of the

chromosome provide a cytogenetic representation of DNA copy number vari-

ation. However, one major drawback of CGH is the resolution. The mapping

resolution is only 20Mbp (Mega-Base Pairs) i.e. the smallest measurable de-

tail is 20Mbp. In addition to that mapping resolution for deletion is 2Mbp.

To overcome the problem of CGH, a new microarray technology called aCGH

has been developed. aCGH provides higher resolution than CGH. Fluores-

cence ratios at arrayed DNA elements provide a locus by locus measure of the

copy number changes. Furthermore, a type of DNA arrays called BAC arrays

(Bacterial Artificial Chromosome) covers the whole genome in an overlapping

manner consisting of as many BAC clones as necessary (which is ≈32400 for

2



Chapter 1. Introduction

the human genome) [10]. DNA arrays also includes Oligonucleotide arrays [11]

and promoter arrays [12]. Oligonucleotide arrays and cDNA arrays are gen-

erally used for gene expression analysis (determining the expression level of

each gene). Oligonucleotide arrays also find their application in SNP (Single

Nucleotide Polymorphism) analysis. Promoter arrays are often used to iden-

tify transcription factor binding sites. Next generation sequencing [13, 14, 15]

provides an opportunity for high-throughput sequencing producing data at

exponential rates.

These technologies have varying uses including the gene expression analy-

sis, detecting aberrations in genes and chromosomes and have a positive im-

pact on cancer research. Furthermore, completion of the Human Genome

Project [16, 17] in 2003 has opened an interesting area of research in computa-

tional genomics. The most common aspect of all these techniques is that they

produce data in astronomical proportions. For instance, the third generation

of DNA sequencers [14, 15] will generate many petabytes1 of information a

year. The introduction and application of these methods in cancer research

have led to the accumulation of data at exponential rates. Hence, there is an

urgent need to understand complex biological systems from this huge amount

of data which involves the analysis of the data exploded by those experiments.

This is where a relatively new field of ML (Machine Learning) and DM (Data

Mining) is increasingly finding its way in the medical field, especially in the

cancer research.

Machine Learning and Data Mining

Machine learning is a branch of artificial intelligence incorporating a myriad

of statistical, probabilistic and optimization techniques allowing computers

to learn from past examples to help detect and discover meaningful patterns

from large, noisy and complex data sets [18, 19, 20]. Machine learning encom-

passes a variety of methods, including classification, regression, clustering, and

pattern discovery with varying applications such as object recognition in com-

puter vision, natural language processing, medical diagnosis, bioinformatics,

brain-machine interfaces, classifying DNA sequences, speech and handwriting

11 petabyte is equal to 1024 TB (terabytes) or 1,048,576 GB (gigabytes).

3



Chapter 1. Introduction

recognition. The machine learning and data mining, although a relatively new

field, its community has already developed a cohort of many fascinating algo-

rithms, interesting ways to handle the concept classes and elegant and clever

ways to search through huge databases. The medical field can, therefore, reap

the benefit of these methods and adapt these methods for analysis of ever

increasing medical data.

Recently, machine learning methods are increasingly used in cancer research

because of its versatility, the sheer volume of data generated by the biological

experiments, dramatic growth in new scientific questions, and new challenges

for learning and inference. The presence of massive population-wide, lifelong,

trans-generational, and electronically accessible datasets obligates the use of

machine learning and data mining methods in health-care and medicine. Dif-

ferent classification methods are used for cancer diagnosis, clustering for prog-

nosis and tumor class discovery, and feature selection for biomarker identifi-

cation [21]. The concept of personalized medicine2, which is essentially a

set of methods to map diagnostic results to therapies in cancer cases, has led

to the application of different novel machine learning methods. Furthermore,

a variety of new scientific and clinical problems introduced almost everyday

necessitate the development of novel supervised and unsupervised learning

methods to use these growing resources in terms of data and knowledge. Can-

cer genomics is a highly researched area producing significant amount of data

and questions for the research.

1.2 Chromosomal Aberrations

It is important to note that cancer is a multifactorial3 disease as shown in [22].

For example, it is well known that smoking causes cancer, but all cancers are

not caused by smoking and all the people who smoke will not develop cancer.

However, all the cancer cases incorporate some form of genetic changes in

2One United States Senate Bill (proposed law) defines personalized medicine as the appli-

cation of genomic and molecular data to better target the delivery of health care, facilitate the

discovery and clinical testing of new products, and help determine a person’s predisposition

to a particular disease or condition.
3Here multifactorial is used to mean there are many factors causing cancer. The majority

of the noninfectious diseases are multifactorial.
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Chapter 1. Introduction

human beings. Humans have 23 (22, X and Y) pairs of chromosomes. Humans

being a diploid organism have two homologous copies of each chromosome,

usually, one inherited from the father and the other from the mother. During

the complex process of cell division, some abnormalities can occur in the cells

and copy number changes from two [23]. These changes are often referred

to as CNV (Copy Number Variation). The reasons for such abnormalities

have not been identified yet but even the latest studies [24] believe in the

abnormality of chromosomes as a cause of cancer. It is, however, important to

note that fork stalling and template switching, a replication misstep, has been

attributed to such abnormalities [25]. Deletion, often referred to as loss, is the

case when the copy number is less than two. Duplication, often referred to as

gains, is the case when the copy number is more than two. Amplification is

the special case of duplication where the copy number increases more than 5.

Chromosomal aberrations such as DNA amplification, deletion and duplication

have significant roles in cancer research [23]. Some amplifications have shown

more than 100 copies. DNA copy number amplifications have been defined as

the hallmarks of cancer [26].

1.3 Multiple Resolutions of Genome

Figure 1.1: G-banding patterns for normal human chromosomes at
five different levels of resolution. Source: Shaffer et. al. 2009 [1].
Example case in Chromosome 17.
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Chapter 1. Introduction

Biological experiments performed with high throughput and high resolution

techniques often produce data in multiple resolutions. Furthermore, ISCN

(International System for human Cytogenetic Nomenclature) has defined five

different resolutions of the chromosome band: 300, 400, 550, 700 and 850 [1]. In

other words, chromosomes are divided into 862 regions in resolution 850 (fine

resolution) and 393 regions in resolution 400 (coarse resolution). Figure 1.1

shows the G-banding patterns showing five different resolutions in chromo-

some 17. For example, chromosome 17 in resolution 300 is divided into 10

parts while in resolution 850, the same chromosome 17 is divided into 24 dif-

ferent parts. Division of the regions is irregular and varied for different regions.

Some regions are not divided at all where as some other regions are divided

into many different parts. For example, in chromosome 17, the region 17q22 is

not divided at all in resolution 400, 550, 700 and 850. However, region 17q21 is

divided differently in resolutions 400, 550, 700 and 850. Furthermore, different

staining techniques produce chromosome bands in different resolution. How-

ever, typically computational algorithms work with only single resolution of

the chromosome. Thus, data is available in different resolutions thus necessi-

tating new methods to be devised to work with the multiple resolutions of the

data. Currently, the general principle for working in multiple resolution has

been to work independently on two different resolutions and get the separate

results and at best compare them. The improvement on the above principle

is to transform the data to a common representation and apply the machine

learning algorithm to the data in the same representation. We implement both

the principles in this thesis. Furthermore, the models that directly learn from

multiple resolutions of data can be developed, which is left as future work as

a perspective post-graduate studies.

Working with multiple resolutions of data is important for the database inte-

gration and utilization of all the data and other available resources in multiple

resolutions. Furthermore, comparing the results of an algorithm on data in

different resolutions can produce interesting results which aid in determining

suitable resolution of data. In addition, experiments in different resolutions

can be helpful in determining the appropriate method for staining. Further-

more, machine learning and data mining algorithms and methods are in most

cases data hungry and require significantly large amount of data for plausible
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results. Thus, database integration is important to work with high dimensional

data having small number of samples. For example, the validation technique

cross-validation used in this thesis has been shown not to work very well with

small sized data samples in [27, 28]. Multiresolution data occurs naturally

in various fields such as telecommunication industry, image processing; thus

working with multiresolution data can be interdisciplinary and signifies the

importance of working with multiresolution data.

In this thesis, upsampling, a technique to transform the data from coarse

resolution to fine resolution, and downsampling, a technique to transform the

data from fine resolution to coarse resolution of chromosome bands, is used to

transform the data in different resolutions to a single resolution which are ex-

plained in detail in Chapter 3. Then it presents a mixture modelling approach

to reveal the structure in the chromosomal aberrations of cancer patients. The

use of mixture models is motivated by the fact that cancer is not a single dis-

ease but a collective term for a class of diseases with some similarity. As the

classes are different, the causes of cancers also differ among different types

of cancers. Mixture models usually thrive in modeling such heterogeneous

data generated from different classes. These models can be used to develop

generic models to combine the samples from different sub-populations4. The

model based clustering approach is used to optimally divide the data into

clusters. Cross-validation technique is used to learn the model i.e. the num-

ber of subpopulation that the data supports. The parameters of the mixture

models are learned from the data using the Expectation Maximization (EM)

algorithm [29, 30]. The chromosomewise modeling generates a probability dis-

tribution to express the amplification patterns in cancer for each chromosome.

This probability distribution can be used for the classification of different types

of cancer. The chromosomal aberrations dataset analyzed in this thesis uses

very scarce data as explained in Section 4.2. Thus, we decided to work chro-

mosomewise because of the availability of very few samples of the data to

constrain the complexity of the mixture models.

4Subpopulation is used here to mean different types of cancers. Each subpopulation
represents a type of cancer
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Chapter 1. Introduction

1.4 Outline of the Thesis

Chapter 1 introduces the topic of the thesis with motivations for studying

cancer using machine learning methods. It also provides brief introduction to

the problem of chromosomal aberrations in multiple resolutions. Chapter 2

covers the mixture models, Expectation Maximization (EM) algorithm and

other relevant theoretical background required for the work in the thesis. Sim-

ilarly, Chapter 3 focuses on the methods for upsampling and downsampling

of chromosomal aberration data available in multiple resolutions. Chapter 4

discusses the various experiments performed and analyzes the results of exper-

iments. Chapter 5 draws conclusions from experimental results and discusses

potential future areas of research.

1.5 Contributions of the Thesis

The major contributions of the thesis are briefly summarized below:

1. Upsampling and downsampling methods to transform the genomic data

to different resolution facilitating database integration.

2. The chromosomewise analysis of chromosomal aberrations in multiple

resolutions using mixture models of multivariate Bernoulli distributions

for the data in the same resolution.

3. Studying the behavior of the mixture models in different resolutions.

4. Investigation of the patterns in the multiple resolutions of data and the

trained mixture models.

8



Chapter 2

Mixture Models and 0-1 data

“ The purpose of models is not to fit the data but

to sharpen the questions. ”— Samuel Karlin

11
th R A Fisher Memorial Lecture (1983)

Synopsis

This chapter is devoted to the introduction of the mathematical

foundation of mixture models, special consideration is on the finite

mixture models of multivariate Bernoulli1 distributions. The chap-

ter also covers EM algorithm [29, 30] and its formulation for the fi-

nite mixture models of multivariate Bernoulli distributions [29, 31].

The chapter also provides brief introduction to cross-validation, a

method for accessing the results of statistical analysis. Near the

end of the chapter, it shortly reviews the literature on the use of

finite mixture models of multivariate Bernoulli distributions with

a focus on cancer genetics. Part of work discussed in this chapter

has been published in [32] and [33].

2.1 0-1 Data

History of collection of information and data is quite long. However, the size

of data and information was relatively small. Recently improved technology,

1Bernoulli Distribution is named after Swiss scientist Jacob Bernoulli(1654-1705)
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increased storage capacity, and more importantly the realization of importance

of data has lead to the collection and storage of data. Moreover, as discussed in

Chapter 1, recent technologies are producing data at exponential rates. Thus,

extracting meaningful information from those data is a matter of extreme ur-

gency. In all the fields of study ranging from biology through astronomy to

social sciences, 0-1 data has been of special interest. 0-1 data is a special class

of categorical data with only two scales which can be considered as true or

false, success or failure. In other words, 0-1 data captures the dichotomy of

two classes. 0-1 data have only two classes (categories) and often represented

as 0 and 1 or 1 and -1. 0-1 data naturally occur in many areas of study:

in social science, interview questions relating to marital status, gender, like or

dislike, alive or dead can be formulated as 0-1 data. Similarly, in palaeontology

0 can represent absence of fossils and 1 can represent presence of fossils [34].

In universities, the relationship between courses and the students can be rep-

resented as 0-1 data where 1 represents that the student has taken the course

and 0 represents that the student has not taken the course as discussed and

preprocessed in [35]. One of the principal uses of the 0-1 data is in ‘Market

Basket Data’ which assembles information about whether a customer has

bought certain goods or not. One of the popular benchmark dataset RETAIL

is a prominent example of a market basket data [36]. Over the years biology

and genetics, have been one of the major sources of 0-1 data. For example, 0-1

data can capture the notion of presence or absence of certain characteristics

in species. 0-1 data analyzed in this thesis as discussed in Section 4.2 is also

a 0-1 data denoting the presence or absence of chromosomal aberrations in

chromosome bands.

2.2 Mixture Models

Probabilistic modeling aims to approximate the probability of an event occur-

ring again on the basis of limited instances of observed data. The estimated

probability distribution aims to explain the process of data generation. FMM

(Finite Mixture Models) are probabilistic models with varying uses such as

density estimation, clustering, classification [20, 31, 37]. These models belong

10
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to an interesting and flexible model family for modelling latent (unobserved)

variables in complex distributions. Finite Mixture Models have a very long

history. Geoffrey McLachlan and David Peel in their book “Finite Mixture

Models” attribute famous biometrician Karl Pearson for the first use of the

mixture models where he fitted two Gaussians with different means (µ1 and

µ2) and variances (σ2
1 and σ2

2) in proportions π1 and π2 for some data in

1894 [37]. However, the popularity of mixture models has significantly grown

over the past few decades because of the dramatic increase in computing power.

Nonetheless, the major share of contribution goes to the mathematical foun-

dation, formulation and understanding of the mixture models. Furthermore,

formulation of the EM algorithm [30], which provides a conceptual framework

to estimate the maximum likelihood from the incomplete data, in 1977 pro-

vided the necessary impetus to the growing use of mixture models. Over the

few years, finite mixture models have been extensively used in many applica-

tion domains including model based clustering, classification, image analysis,

and collaborative filtering in analysis of high dimensional data.

Figure 2.1: Schematic representation of different forms of distribu-
tions.

FMM (Finite Mixture Models) models a statistical distribution by a mix-

ture (or weighted sum) of simple distributions such as Gaussian, Poisson and

Bernoulli. It decomposes the density function into a set of component density

functions. Each of the decomposed density functions defines a specific class

of the origination of the data i.e each component density functions represents

11
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a portion of original distribution. This form of representation is not possible

with other simple parametric distributions. The basic assumption of FMM is

that the different classes2 in the data originate from the well-known paramet-

ric distributions. Except for this assumption of the data source, FMMs are

extremely flexible in the choice of the distribution. Any classical parametric

distributions such as Normal(Gaussian), Poisson [38], Bernoulli can be chosen

as component density function. Unlike the case with one Bernoulli, determin-

ing the training sample contributing to a particular component is not possible.

Hence, the methods based on mean and covariance matrix are not applicable

to the mixture models.

After the choice of distribution, the primary task is then to estimate the

parameters of the selected distribution such as mean (µ) and variance (σ2) for

Gaussian distribution; rate of occurrence (λ) for Poisson distribution [38]. It

is important to note that each component distribution will be defined by its

own set of parameters thus differing itself from the others. This explains the

reason why mixture models are called semi-parametric models as depicted in

the Figure 2.1. The complexity of mixture models depends on the complexity

of the problem being solved, not the size of dataset. In this thesis, 0-1 data

is analyzed and the assumption is that it follows the Bernoulli distribution.

Bernoulli distribution of a single random variable is parameterized by one

parameter θ which denotes the probability of success in a trial with two possible

outcomes: success and failure. The learning task is then limited to learning

the Bernoulli parameter θ.

Advantages of Mixture Models

Mixture Models have various merits and are often a suitable choice for mod-

elling data. Some of the most useful characteristics of mixture models can be

summarized as the following:

• A mixture model learns the structure in the data better than most other

methods as the different component distributions capture the dominant

patterns present in the data.

2The class here is not similar to the class labels.

12
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• Learning mixture models involve well studied statistical inference tech-

niques [37].

• Mixture models are flexible in terms of the choice of the component

distributions.

• Mixture Models can generate leptokurtic distributions from mesokurtic

ones [39].

• Mixture Models can also generate skewed distributions from symmetric

components [39].

• It is suitable for any form of data either discrete or continuous.

• When mixture models are used in clustering, the components represent

the clusters thus making it possible to obtain density estimation for each

cluster.

• Mixture models also provides the facilities for soft classification [39].

Mixture models are flexible models and have varying uses. Some of the basic

areas where mixture models are most prevalent are:

• Clustering: Mixture models are at the heart of model based clustering

where each component denotes one cluster.

• Handling Missing Data: Mixture models have also been extensively

used to handle the missing data for building the model [37].

• Density Estimation: In Bayesian statistics, mixture models can be

used to assign the flexible priors [37].

• Model Averaging: Mixture models have often been used to combine

different density models [20].

• Modelling Heterogeneity: Here in this thesis mixture models have

been used to model the heterogeneous cancer cases in different patients.

13
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Mixture of Multivariate Bernoulli Distributions

The major focus of the thesis is concentrated on modelling DNA copy number

aberrations which is 0-1 data. Hence, the mixture of multivariate Bernoulli

distributions forms the crux of the thesis.

Univariate Bernoulli distribution is a probability distribution with two pos-

sible outcomes: success and failure [40]. Consider an example of a single

random binary variable, x ∈ {0, 1} where x = 0 denotes the failure of an event

and x = 1 denotes the success of an event or other similar dichotomy such

as success or failure of an event and the coin tossing. For example, success

of an event may be a student participating a course and failure of an event

may be the student not participating in the course [35]. Let the probability

of occurrence of x = 1 be θ such that 0 ≤ θ ≤ 1. Therefore, the probability of

occurrence of x = 0 is 1 − θ. Thus, p(x = 1|θ) = θ and p(x = 0|θ) = 1 − θ.

Accordingly, the probability mass function i.e. probability distribution [40, 20]

over x is given by the equation

p(x|θ) = θx(1 − θ)1−x (2.1)

The mean or the expected value of the random binary variable is given by

E[x] = 0 × p(x = 0|θ) + 1 × p(x = 1|θ) = p(x = 1|θ) = θ (2.2)

The variance of the random binary variable is defined as the dispersion of

random variable. It can be obtained by

var(x) = E(x2) − {E(x)}2 (2.3)

where

E(x2) = 02 × p(x = 0|θ) + 12 × p(x = 1|θ) = p(x = 1|θ) = θ

and also

{E(x)}2 = θ2

14
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Therefore,

var(x) = θ − θ2 = θ(1 − θ) (2.4)

The probability p(x|θ) can be extended to the binary space {0, 1}N i.e.

to a dataset X = {X1, . . . , Xd} and X1 = (X11, X12 . . . X1d) [20]. Here,

(X11, X12 . . . X1d) are the observed values of X. Hence, the probability mass

function of the multivariate Bernoulli distribution is given by

P (D|Θ) =
d

∏

i=1

p(xi|θ) =
d

∏

i=1

θxi

i (1 − θi)
1−xi (2.5)

where θ ∈ R
i and 0 ≤ θi ≤ 1 for all 1 ≤ i ≤ d and x1, x2, . . . xd = x ∈ {0, 1}N

Figure 2.2: A graphical mixture model of mixture of Bernoulli.

This can be represented as the DGM (Directed Graphical Model), which is

a type of DAG (Directed Acyclic Graph) [20] as shown in Figure 2.2 which is

similar to Naive Bayes classifier except that the class labels Zn is hidden.

The likelihood function in Equation (2.5) is a function of θ. For independent

and identically distributed samples X = {xn}
N
n=1 from {0, 1}N, the vector θ̂

that maximizes the likelihood function in Equation (2.5) is the estimated value

of θ. The joint probability for the N samples of data is given by:
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ln (P (X1, X2 . . . XN)) = ln
N

∏

i=1

p(xi)

ln
N

∏

i=1

p(xi) =
N

∑

i=1

lnp(xi) (2.6)

Furthermore, maximizing the likelihood function in Equation (2.5) equiva-

lent to maximizing the logarithm of the likelihood. Thus,

ln p(D|Θ) =
d

∑

i=1

ln p(xi|θi) =
d

∑

i=1

xi ln θi + (1 − xi)(1 − θi) (2.7)

From Equation (2.7) it can be seen that the log likelihood function depends

on the d samples of xd through the sum
d

∑

i=1

xn which provides adequate statis-

tics about the distribution. Taking the derivative of (2.7) with respect to θ

and equating it to zero gives the value of maximum likelihood estimation. The

value is given by:

θ̂ML =
1

N

N
∑

i=1

xi (2.8)

The Definition (2.8) is also known as the sample mean. If the sample X con-

tains higher order correlations, the sample covariance matrix will be diagonal.

Hence, the maximum likelihood estimator in Equation (2.8) gives unsatisfiable

result.

Assuming that the data comes from a mixture of known number of the

components, J , finite mixture of multivariate Bernoulli distributions is defined

as:

p(D|Θ) =
J

∑

j=1

πjPj(x|θj) (2.9)
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In Definition (2.9) each Pj is a multivariate Bernoulli Distribution param-

eterized by θj. Hence, the finite mixture model for multivariate Bernoulli

distribution can be formulated as:

p(D|Θ) =
J

∑

j=1

πj

d
∏

i=1

θxi

ji (1 − θji)
1−xi (2.10)

where πj are the mixture proportions satisfying the properties such as convex

combination such that πj ≥ 0 and
J

∑

j=1

πj = 1 for all j = 1, . . . J . The model

parameters, Θ, is composed of θ1, θ2, θ3 . . . θd for each component distribution.

The combination of J mixtures of multivariate distribution in Equation (2.10)

can capture the correlations (the clustering structure) in the sample X thus

solving the problem of unsatisfiable result in Equation (2.8). Finite mixture

of multivariate Bernoulli distributions with number of components equals to

J and dimension of dataset = d is parametrized by Θ = {J , {πj, θj}
J
j=1} for

each component distribution.

Fitting the Bernoulli Mixture Model involves learning the parameters Θ

and the number of components J from the given data sample X. This can be

formulated in terms of loglikelihood as:

L(Θ) =
N

∑

n=1

log P (xn|Θ) =
N

∑

n=1

log

[

J
∑

j=1

πj

d
∏

i=1

θxni

ji (1 − θji)
1−xni

]

(2.11)

The Equation (2.11) can be maximized with high number of mixture com-

ponents i.e. the mixture models gets high likelihood values for the training set.

However, large number of mixture components increases model complexity and

often results in overfitted model generalizing poorly on future data. On the

other hand, smaller number of mixture components results in underfitting. To

find the trade-off between the appropriate model complexity and large value

of the Equation (2.11) some validation techniques must be used. The basic

aim of the thesis is to achieve maximally simple and compact parsimonious

models. A parsimonious models are the models having as few parameters as
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possible for a given quality of a model. There are different principles for devel-

oping parsimonious models such as Ockham’s razor [41]. In this thesis, 10-fold

cross-validation discussed in Section 2.4 is used for the same purpose. The

maximization of the Equation (2.11) can be performed by using EM algorithm

discussed in Section 2.3.

One of the major drawbacks of finite mixture models of multivariate Bernoulli

distributions is that it belongs to the class of non-identifiable distributions [42].

Thus, there exists distinct parameters (α , θ) and (β , λ) such that they rep-

resent same distribution excluding the trivial permutations. The problem of

non-identifiability has been extensively studied in literature after it was proved

in [42, 43] that these FMMs are non-identifiable. However, studies in [43] have

proved that in spite of their non-identifiable nature, they are useful in various

applications.

Challenges in Using Mixture Models

In spite of great virtues of mixture models, there are several major challenges

in the estimation of mixture models. The mixture models require that the

number of components be known apriori. Even if the models are known apri-

ori, it is often difficult to reliably distinguish different components. In worst

case scenario, some of the components may simply converge to the outliers

present in the data. It is important to note that selection of the number of

mixture components directly influences the performance of the mixture mod-

els. Lesser the number of components, the mixture model behaves similar to

a simple parametric model and increases the bias. On the contrary, if the

mixture model has a large number of components, the model can overfit the

data thus producing unreasonable variation. Hence, there is always a trade-off

between the two. Secondly, the likelihood function may have multiple local

maxima. In order to address these challenges we use 10-fold cross-validation

repeated 50 times so that we get the optimal results. Thirdly, the major draw-

back in using mixture models is the computational complexity of training the

mixture models. Normally, training mixture models is computationally expen-

sive when compared with other parametric (such as Poisson distribution [38])

as well as non-parametric (such as k-means [44, 45]) methods.
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2.3 Expectation Maximization Algorithm

Different methods have been proposed and implemented to estimate the pa-

rameters of the mixture model including EM (Expectation Maximization) [29,

30], MCMC (Markov Chain Monte Carlo) [46], and Spectral Method [47, 48].

MCMC uses Gibbs sampling to sample from posterior distribution. Spectral

method, on the other hand, uses SVD (Singular Value Decomposition) [49, 50]

on the data. For distributions satisfying specific separation condition, spectral

method estimates the mixtures highly similar to the true mixture with high

probability [48]. However, in this thesis EM algorithm, is used to estimate the

parameters of the mixture model in a cross-validation setting to justify the

selection of the number of component distributions.

Given a sample X, the parameters maximizing Θ and J can not be as-

certained analytically. However, EM algorithm can be used to optimize the

parameters. The Expectation Maximization (EM) is an iterative algorithm

for the computation of maximum likelihood with broad application areas and

was first coined by Dempster, Laird and Rubin in [30]. The EM algorithm

gets its name because in each iteration of EM algorithm comprises two steps:

Expectation Step (E-Step) and Maximization Step (M-Step).

Componentwise differentiation of the Term (2.11) with respect to θ and π

results in:

δL

δπj

=
1

πj

N
∑

n=1

P (j|xn; π, Θ) − N j = 1, . . . , J (2.12)

And also

δL

δθji

=
1

θji(1 − θji)

N
∑

n=1

P (j|xn; π, Θ)(xni − θji) (2.13)

where j = 1, . . . , J and i = 1, . . . , d

The term -N in equation satisfies the constraint
∑J

j=1 πj introduced in log-

likelihood via Lagrange multiplier. Now, From Bayes’ theorem the posterior
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probability can be calculated as shown below.

P (j|xn; π, Θ) =
p(xn|j; π, Θ)p(j)

∑J

j′=1 P (xn|j′; πΘ)p(j′)

=
πj

∏d

i=1 θxni

ji (1 − θji)
1−xni

∑J

j′=1

∏d

i=1 θxni

j′i (1 − θj′i)1−xni

(2.14)

Derivation of the EM algorithm is fairly simple and can be referred from

the works of Everitt and Hand [31] as well as Wolfe [29]. The basic equations

of EM algorithm are:

E-step: E-step computes the posterior probability using the Equation 2.14

for the most recent values of parameters θτ , Θτ at iteration τ i.e. calculate

P (j|xn; πτ , Θτ )

M-step: M-step recomputes the the values of parameters θτ+1, Θτ+1 for the

next iteration.

πτ+1
j =

1

N

N
∑

n=1

P (j|xn; (π(τ)), Θ(τ))

Θ
(τ+1)
j =

1

Nπ
(τ+1)
j

N
∑

n=1

P (j|xn; (π(τ)), Θ(τ))xn (2.15)

Iterations between E and M step produce a succession of monotonically in-

creasing sequence of values of loglikelihood for the parameters τ = 0, 1, 2, 3 . . .

regardless of the starting point {π(0), Θ(0)}. This result is advantageous but

also results in the problem of singularities, the possibility of getting an in-

finite likelihood if a single data point is assigned to one of the mixtures.

However, mixture of Bernoulli distribution are not susceptible to the problem

of singularities because the likelihood function is bounded by the constraint

0 ≤ p(xn|θj) ≤ 1 except for some trivial cases such as: assume that data is 1

but model is 0, so the likelihood of the model is 0 and if we take the loglike-

lihood it turns out to be log0 = ∞. Furthermore, loglikelihood surface is un-

bounded. Such problems, however, are rare in multivariate case. EM requires

that the number of the mixture components in the mixture model be known in

advance. Furthermore, EM algorithm is sensitive to the initializations and the
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results may differ on the same data for different initializations. Nevertheless,

EM algorithm is deterministic with given initializations and a given dataset.

EM algorithm can get stuck in local minima and the global optimal results are

not often guaranteed. To overcome these problems regularization techniques

as discussed in [51] can be used. In spite of these demerits, EM algorithm has

been widely used because of its reliability.

One of the important issues to note regarding the non-identifiable problem is

that it matters least with respect to this thesis. Our main aim is to maximize

the Equation (2.11) considering the trade-off between the model complexity

(number of components in the mixture model) and small difference in the max-

imum likelihood value. If different parameters satisfy the trade-off, choosing

any of those parameters will have negligible effect on the final results.

2.4 Cross-validation

The idea of cross-validation, sometimes also called rotation estimation and

pioneered by [52] and [53], is fundamental concept in machine learning for as-

sessing the results of the statistical analysis. Various forms of cross-validation

techniques have been proposed. The basic definition of k-fold cross-validation

states that the training set T is divided into k exhaustive and exclusive equal

sized sub-sets T1, T2, . . . Tk. The main assumption is that the both the

training and the validation sets are independent. For each sub-set Ti where

i ∈ 1, 2, 3 . . . k the data is trained on the union of all the other subsets and

determine the error on the subset Ti. The final error of the algorithm is the

average error on all the sub-sets as shown in the Equation 2.16.

ε =
1

k

k
∑

i=1

ǫi (2.16)

The initial subset of data is called the test set; while union of the remain-

ing subsets is called the training set. The efficiency of k-fold cross-validation

largely depends on the choice of k. If the number of k is small, the algorithm

is computationally efficient as it requires performing lesser rounds of experi-
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ments. Furthermore, the variance of the estimator will be negligible. On the

contrary, the bias of the estimator will be significantly larger, larger than the

true error (generalization error) on the future data.

Figure 2.3: Schematic representation of k-fold cross-validation tech-
nique showing the division of training data into training and vali-
dation set. The figure here shows the case when k=10.

On the other hand, if the number of k is large, the bias of the estimator will

be significantly low. With large value of k, the bias is likely to converge to the

true error (generalization error) on the future unseen data. On the contrary,

the computational time is greatly increased as the number of iterations in-

creases. For example, in simple 10-fold cross-validation the learning algorithm

is repeated 10 times with 9/10 of the total data. Additionally, variance of the

true error estimate will be significantly larger. In most of the cases, the choice

of k depends on the size of dataset. If the size of dataset is larger, smaller

number of k is a better option while for smaller datasets larger number of k

will be a better option.

The optimal number of k for k-fold cross-validation highly researched area

but still an open problem. Although there are some empirical [54] and math-

ematical results [55] suggesting the optimal value of k, the choice depends on

the rule of thumb. Comprehensive studies and experiments on datasets of dif-
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ferent sizes have shown that ten is the optimal number of k to get the accurate

error [55]. In cross-validation data is randomly divided into k different sets.

Hence, different runs of cross-validation with the same learning algorithm on

the same data can produce different results. In order to mitigate this problem,

different runs (often 10) of the cross-validation procedure is suggested which

involves running the learning algorithm 100 times with 9/10 of the total data

each time. One 10-fold cross-validation can be seen as a “standard” measure

of the performance whereas ten tenfold cross-validations would be a “precise”

measure of performance [56]. Furthermore, similar to the problem in hold-out

method, cross-validation is also susceptible to “unfortunate split”. Thus while

partitioning the data into subsets, care should be taken to include different

unique samples of data in all rows to each of the subset. The idea of ‘strat-

ification’ have been suggested as the solution to the problem of unfortunate

split thus ensuring that each class is properly represented in both training

and the validation sets. It is important to note that different classes are only

approximately represented in the proportion present in the training set.

2.5 DNA Copy Number Aberrations Data

Humans, being a diploid organism, have two homologous copies of each chro-

mosome usually, one inherited from the father and the other from the mother.

During the complex process of cell division, some abnormalities can occur in

the cells and copy number changes from two [23]. Deletion, often referred to

as loss, is the case when the copy number is less than two. Duplication, often

referred to as gains, is the case when the copy number is more than two. Am-

plification is a form of chromosomal aberration when the copy number of the

chromosome increases more than 5. Amplification is different from duplication

because duplication exactly doubles the copy number. For instance, in human

the normal copy number is two, so duplication increases the copy number to 4.

Higher level amplifications have been known increases the copy number more

than hundred fold. Generally, the amplification is developmentally regulated

and amplified copies are lost from the cell. However, amplification in many

cases manifests itself in larger number throughout the genome [23]. DNA am-
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plifications are essentially the hallmarks of cancer. Studies have also shown

that copy number amplification results in resistance to certain drugs [23].

CGH (Comparative Genomic Hybridization) [8] is one of the molecular tech-

niques to survey the DNA copy number variation across the whole genome.

Differentially labeled test and reference genomic DNA are cohybridized to

normal metaphase chromosomes. Fluorescence ratios along the length of the

chromosome provide a cytogenetic representation of DNA copy number vari-

ation. However, one major drawback of CGH is the resolution. The mapping

resolution is only 20Mbp (million base pairs) which is also the average size of

the aberrated region. Furthermore, mapping resolution for deletion is 2Mbp.

To overcome the problem of CGH, a new microarray technology called aCGH

(Array Comparative Genomic Hybridization) [9] has been developed. aCGH

provides higher resolution than CGH. Fluorescence ratios at arrayed DNA el-

ements provide a locus by locus measure of the copy number changes. aCGH

was initially used to characterize variation in gene expression using cDNA.

Using the CGH methods, the chromosome is subbanded to 400 regions, also

known as cytogenetic bands. Using different staining techniques, the cytoge-

netic bands can be visualized and the resolution of the cytogenetic band can

be increased to over 800 resolution.

2.6 Review of Literature

The problem of analysis of 0-1 data is a very old problem and has been con-

sidered extensively in statistics and machine learning. The mixture model

is also a well-studied solution. Recently, mixture models have been a sub-

ject of major research. For detailed review regarding mixture models and its

applications, the reader is referenced to [37, 57] and the references therein.

On the other hand [7] reviews different machine learning methods applied to

cancer research. In spite of the great boom of mixture models in the last few

decades, comparatively very few instances of research are based on the mixture

of multivariate Bernoulli distributions. Nonetheless, the mixture of Bernoulli

distribution is found to be suitable in the analysis of the 0-1 data. Thus, this

section briefly reviews the research and applications pertaining to the mixture
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of multivariate Bernoulli distributions with a special focus on cancer genetics.

The mixture of Bernoulli distributions has found significant application ar-

eas when the data is in 0-1 form. For example, in [58], Bernoulli mixture model

trained using EM algorithm is used to classify binary images with effective re-

sults. In the case of binary image, multiple mixture captures the pixel correla-

tions. Each pixel is assumed to be governed by its associated Bernoulli param-

eter. One particular application area in which the use of FMM of Bernoulli

distributions has excelled is natural language processing. In [59], FMM of

Bernoulli distributions is used in text classification. The text classification

is used to improve the language modelling for machine translation. The text

classification is used as an extension to näive Bayes by modelling the class con-

ditional dependence spreading it over different mixture components. In [60],

FMM of Bernoulli distributions has been used in classification. Additionally,

the Bernoulli mixture models are used for feature selection and feature extrac-

tion including dimensionality reduction from the input data. The combination

of the methods implemented in two datasets of varying domains: text mining

and hand writing recognition, produces considerable increase in the classifica-

tion accuracy. Furthermore, the dimensionality reduction of 99.9% is achieved

on the sparse 0-1 data. An interesting and early application of Bernoulli mix-

ture models for statistical modelling of teaching styles is explained in [61]. The

authors compiled a 38 dimensional 0-1 data set of 1258 samples from a ques-

tionnaire consisting of 28 items. The mixture modelling technique was tested

on 2 to 22 clusters and 12 clusters was selected as it produced the overall

maximum. With this statistical modelling techniques, the authors were able

to distinguish different teaching styles.

2.6.1 Mixture Models in Copy Number Analysis

DNA copy number analysis was started in [62] where the authors mainly fo-

cused on determining the copy number of the cytogenetic band. Similar works

performed are reviewed in [63] to determine the copy number. However, in [62]

and [63] the authors did not establish a relation between the copy number and

their clinical significance. In the recent past, DNA copy number amplifica-

tion data collected with bibliomics survey from 838 journal articles published
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from 1992 to 2002 was analyzed in [64]. In the work, amplification patterns

were determined for 73 different neoplasms and the neoplasms were clustered

according to amplification profiles thus identifying the amplification hotspots

using independent component analysis. The profiling revealed that human

neoplasms formed clusters based on the amplification frequency of the cancer.

Continuing the studies in DNA copy number amplification, authors in [22]

classified the human cancers based on copy number amplification using prob-

abilistic modelling. Furthermore, the authors extracted the ranges of the am-

plification in the chromosome and expressed it according to the cytogentic

nomenclature. In [26] and [65], the authors modeled the DNA copy num-

ber amplification using a mixture of multivariate Bernoulli Distributions. The

classification of 73 different neoplasms in [64] were extended to 95 different neo-

plasm types. Furthermore, in [66], the authors have proposed the enhancement

to Bayesian Piecewise Constant Regression(BPCR) called mBPCR changing

the segment number estimator and boundary estimator to enhance the fitting

procedure. The proposed mBPCR was more accurate in the determination of

true breakpoints of amplification. The more recent studies [67] and [68] have

mainly focused in cancer specific analysis of DNA copy number. Although the

mixture models were used in [26] and [65], they have studied only chromosome

1 data in resolution 400. Chromosome 1 being the largest chromosome, there

is significant amount of amplifications [64]. However, single chromosome band

and the specific gene responsible for cancer has not been identified. Hence, in

this thesis, study was performed on all chromosomes including chromosome

1. Chromosomewise analysis can reveal interesting facts about amplification

of specific chromosomes and guarantees efficient computation & ease of anal-

ysis. Furthermore, there are several sources of multilevel biological data that

comes in multiple resolutions as shown in Figure 1.1 but there seems to be a

significant gap in research to study multiple resolution of the data as authors

in [64] and in relevant work did not consider the data in multiple resolution.

Algorithms and methods that meet the demands such multiresolution data

could possess very high clinical significance. Thus, this thesis devises methods

able to work with multiple resolutions of genome.
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Chapter 3

Sampling Between Different

Resolutions

“ For everything you have missed, you have gained

something else, and for everything you gain,

you lose something else. ”— Ralph Waldo Emerson

American Poet, Lecturer and Essayist(1803-1882)

Synopsis

This chapter focuses on the different methods used to upsample

data to finer resolutions and downsample data to coarser resolu-

tions. Upsampling, discussed in Section 3.1, transforms the resolu-

tion of data from coarse to fine. The three downsampling methods

discussed in Sections 3.2.3, 3.2.1, and 3.2.2 transform the data from

fine resolution to coarse resolution. Part of the work discussed in

this chapter has been published in [32].

Sampling resolutions in cytogenetics is a process of defining the level of

precision for the staining techniques to produce the results either global or

detailed view. A good metaphor for sampling as given by [69] in terms of

speech recognition can be an advertisement recently aired in a Dutch Television

where the shot is started with a global view. In this case, a shot was taken from
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the orbit satellite and gradually zooming into Europe, the Netherlands, the

Dutch North Sea Coast, the Scheveningen beach up to a lady drinking a glass

of beer in a terrace. Similar to the advertisement, different staining techniques

produce chromosome bands in different resolution. Computational algorithms

can be designed to work with only specific resolution of chromosome band.

Hence, upsampling or downsampling is necessary before the data can be fed

to the algorithm. Furthermore, comparing the results of an algorithm on data

in different resolution can produce interesting results which aid in determining

suitable resolution of data. In addition, experiments in different resolutions

can be helpful in determining the appropriate method for staining.

Figure 3.1: Schematic representation of sampling in multiple res-
olutions where upsampling transforms the data to find resolution
while downsampling transforms the data to coarse resolution.

Section 1.3 explained the problem of multiple resolution in chromosome

along with the Figure 1.1 which showed the G-banding pattern of Chromo-

some 17 in five different resolutions. In the context of Figure 1.1, upsampling

and downsampling can be seen as the process of data transformations as shown

by the arrows in Figure 3.1. Upsampling changes the representation of data

from coarse resolution to fine resolution as shown by the arrow pointing to the

right in Figure 3.1. Similarly, downsampling changes the representation of the

data from fine resolution to coarse resolution as shown by the arrow pointing

to the left in Figure 3.1.
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3.1 Upsampling

Upsampling, as shown in Figure 3.2, is the process of changing the repre-

sentation of data to the fine resolution. A simple method was devised to

upsample the data from coarse resolution. Upsampling was simple and were

implemented using simple transformation tables or lookup tables. Initially,

the dataset was in resolution 400 and it was upsampled to three different

resolutions 550, 700 and 850. Multiple copies of cytogenetic band in coarser

resolution were made to upsample the data to finer resolution. For example,

cytogenetic band 1q36.1 in resolution 550 has been divided into three bands

1q36.11, 1q36.12 and 1q36.13 in resolution 850. So, multiple copies of 1q36.1

was made for all bands 1q36.11, 1q36.12 and 1q36.13 in resolution 850.

Figure 3.2: Schematic representation of upsampling where dupli-
cate copies of similar cytogenetic bands are made in the finer reso-
lution

Figure 3.2 shows that three copies of similar cytogenetic band in coarser

resolution are made to upsample the data to finer resolution. When multi-

ple copies of same cytogenetic band is made finer resolution will have only

few unique rows. Hence, when the sample size decreases the complex model

in higher dimension can not be trained to convergence thus producing poor

results. Implementation of downsampling was performed using simple trans-

formation tables implemented in Perl [70]. Table 3.1 shows an example of table

for transformation of data in 400 resolution to 850 resolution for chromosome

17.

Table 3.1 shows that some chromosome bands missing in 400 resolution are

observed in resolution 850. Hence, duplicate copies of the similar chromosome

band in resolution 400 were made in finer resolution. Duplications are made

based on the assumption that if an adjacent area is amplified then the proba-
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Chromosome Resolution 400Chromosome Resolution 850

17p13 17p13.3

... 17p13.2

... 17p13.1

17p12 17p12

17p11.2 17p11.2

17p11.1 17p11.1

17q11.1 17q11.1

17q11.2 17q11.2

17q12 17q12

17q21 17q21.1

... 17q21.2

... 17q21.31

... 17q21.32

... 17q21.33

17q22 17q22

17q23 17q23.1

... 17q23.2

... 17q23.3

17q24 17q24.1

... 17q24.2

... 17q24.3

17q25 17q25.1

... 17q25.2

... 17q25.3

Table 3.1: Chromosome bands for resolution 400 & 850 and their
transformation

bility of the chromosome band being amplified is high because amplifications

typically cover large areas. The transformation table were chromosome spe-

cific and resolution specific (i.e. 88 transformation tables in all for different

chromosomes).
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3.2 Downsampling

Downsampling is the process of changing the representation of the data to

the coarser resolution. In both cases of upsampling and downsampling, no

attempt is made to infer the structure of the data and no information is added

or removed during the process. If the data of the same patients were available

in two different resolutions, one of the supervised classification algorithms

in machine learning could be used in downsampling dealing the problem as

a traditional classification problem. However, such data was not available.

Hence, simple but useful methods motivated from biology are used for down-

sampling. Downsampling methods were implemented in scripts with a script

for each chromosome in each resolution. Sections 3.2.1, 3.2.2 and 3.2.3 detail

the methods of downsampling.

3.2.1 OR-function Downsampling
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Figure 3.3: Schematic representation of OR-function downsampling
procedure. Here the cytogenetic band in coarser resolution is ampli-
fied if any of the bands in finer resolution is amplified. Cytogenetic
band in coarser resolution is not amplified only when none of the
bands in finer resolution is amplified.

In OR-function downsampling method, the cytogenetic band in coarser res-

olution is not amplified if none of the bands in finer resolution are amplified.

The cytogenetic band in coarser resolution is amplified if either of the bands in
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finer resolution is amplified. Figure 3.3 depicts the OR-function downsampling

method. The OR-function downsampling method is based on simple belief that

if the one of the bands in finer resolution is amplified, it signifies the presence

of amplification in the band. For the case in the Figure 3.3 downsampling

can be considered as a simple 0-1 classification problem in machine learning

where input is three dimensional 0-1 variable and output is one dimensional

0-1 variable. The solution is a simple truth table describing the classical OR

operation. This method does not consider the length of the cytogenetic bands.

3.2.2 Majority Decision Downsampling

Figure 3.4: Schematic representation of majority decision down-
sampling procedure. Here the cytogenetic band in coarser reso-
lution is amplified if majority of the bands in finer resolution are
amplified, otherwise it not amplified.

In majority decision downsampling method, a cytogenetic band in coarser

resolution is amplified if majority of the cytogenetic bands in finer resolution

are amplified otherwise the cytogenetic band is not amplified. In case of a tie

amplification of two nearest bands one in the left and the other one in the

right are taken into consideration iteratively and the amplification pattern of

the band is determined using the idea similar to ‘golden goal’1 strategy used in

football. In other words, if in any iteration both bands in neighborhood bands

1The golden goal is a method used in football to determine the winner which end in a
draw after the end of regulation time. Golden goal rules allow the team that scores the first
goal during extra time to be declared the winner. The game finishes when a golden goal is
scored.
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are amplified then the band is amplified and if both the neighbors are unam-

plified then the band is deemed unamplified. If the amplification of coarser

resolution can not be concluded with ‘golden goal’ strategy then the band in

coarser resolution is deemed as amplified. Figure 3.4 shows one of the examples

of majority decision in downsampling. There is a shortcoming in this down-

sampling method because it does not take into consideration the the lengths

of the cytogenetic bands. The lengths of cytogentenic bands are considered by

length weighted downsampling method discussed in Section 3.2.3.

3.2.3 Length Weighted Downsampling

In length weighted downsampling method, depicted in the Figure 3.5, length of

the cytogenetic band is considered. The length of the cytogenetic band varies

in each assembly and hence relative lengths were considered. The amplification

of cytogenetic band in coarser resolution is determined by the weighted length

of cytogenetic band in finer resolution. Each cytogenetic band is weighted

according to the relative length of the cytogenetic band. If the total length

of amplified region is greater than the total length of unamplified region, the

cytogenetic band in coarser resolution is amplified, otherwise the cytogenetic

band is unamplified. Here, relative length is considered which gives more ac-

curate measure of the amplification profiles in the cytogenetic band. Absolute

lengths of the cytogenetic bands are currently not available and vary with

each assembly. Two relative measures were considered in the calculation of

the length. From the ideogram dataset available in NCBI [71], the difference

between ISCN.top and ISCN.bot were used as relative measures. Similarly, dif-

ference between bases-top and bases-bot were also used as the relative measure

of the length of each cytogenetic band. The difference in the results produced

using the different relative measure of length have also been studied.
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Figure 3.5: Schematic representation of weighted downsampling
procedure. Here the cytogenetic band in coarser resolution is am-
plified if total length of the amplified bands in finer resolution is
greater than the total length of unamplified bands, otherwise it
not amplified. The figure is an example case in chromosome 1q36.1
where two cytogenetic bands 1q36.11 and 1q36.12 in resolution 850
are amplified and one band 1q36.13 is not amplified. However, to-
tal length of unamplified region i.e. band 1q36.13 (345) is greater
than total length of the unamplified region i.e. bands 1q36.11 and
1q36.12 (100+115=225). Hence, the band in resolution 550 is un-
amplified.
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Chapter 4

Experiments and Results

“ Knowing is not enough; we must apply.

Willing is not enough; we must do. ”— Johann Wolfgang von Goethe

German Writer(1749-1832)

Synopsis

This chapter describes the experiments performed on transfor-

mation of data between different resolutions and mixture modelling

of multivariate Bernoulli distributions on the chromosomal aber-

rations. The obtained results are analyzed and discussed.

4.1 Software

This thesis uses a ready programme package for mixture models of multivariate

Bernoulli distributions. Implementing the mixture models from the beginning

and thorough testing would consume significant amount of time. Therefore,

the approach in this thesis was to use a ready-made package and analyze the

results. This approach provided the time to concentrate the efforts on the

machine learning aspects and its application in real world data. Although

programming mixture models from the beginning would be very educational

and precious programming experience, it takes significant amount time and
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diverges the attention from machine learning aspects which was the primary

goal of the thesis.

There are several software, both commercial and open-source, available for

finite mixture modelling. Few examples are:

• MULTIMIX available in http://www.stats.waikato.ac.nz/Staff/maj/multimix

• MIX (Commerical) available in http://icarus.math.mcmaster.ca/peter/

mix/mix.html

• AutoClass available in http://ti.arc.nasa.gov/project/autoclass/

• Clustan available in http://www.clustan.com/

• Snob available in http://www.csse.monash.edu.au/∼dld/Snob.html

• Mtreemix available in http://mtreemix.bioinf.mpi-sb.mpg.de/

• PyMix available in http://www.pymix.org/pymix/

• em available in http://www.ar.media.kyoto-u.ac.jp/members/david/

softwares/em/

• BernoulliMix available in http://users.ics.tkk.fi/jhollmen/BernoulliMix/

• FlexMix [72] http://www.cran.r-project.org /web/packages/flexmix

• mixtools [73] http://cran.rakanu.com/web/packages/mixtools

Most of the software packages above are open-source but have shortcomings

of their own. For example, most of them were designed to work with Gaussian

distribution. Since our main aim was to model Multivariate Bernoulli distri-

butions and BernoulliMix provided all the required features and was freely

available and hence we converged on BernoulliMix for our modelling purposes.

Furthermore, integrating BernoulliMix with other tools such as Matlab [74],

Shell Scripting [75], Perl [70] and R [76] is smooth and unconstrained.
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4.1.1 BernoulliMix Program Package

BernoulliMix [77] programme package is an open-source programme package

for the finite mixture modelling of Multivariate Bernoulli distributions. It is

freely available at BernoulliMix Homepage1 under GPL license. BernoulliMix,

implemented is ANSI C, can be used to model the 0-1 data in the probabilistic

framework. BernoulliMix has five programs to work with finite mixture models

of multivariate Bernoulli Distribution:

• bmix_init: To initialize the mixture models with randomly selected

parameters sampled from the uniform distribution of selected range.

• bmix_train: To train the mixture model from the data using EM

algorithm i.e. learn the parameters of the mixture model.

• bmix_like: To calculate the likelihood of the data with the mixture

model. Likelihood can be calculated either for whole data or each vector

separately.

• bmix_sample: Mixture models are generative models. bmix_sample

provides the facilities to sample the data from the trained mixture model.

• bmix_cluster: To cluster the data (associating a component distribu-

tion with a cluster) with the mixture model by the maximum posterior

rule.

Details about the programme package and its use with examples can be

obtained from [77]. The BernoulliMix programme package was used in con-

junction with Matlab [74], R [76], Perl [70] and Shell Scripting [75] to garner

the results of the experiments.

4.2 DNA Copy Number Aberrations Dataset

The dataset used in the experiments defines DNA copy number aberrations

in different chromosomes. The data was collected by the bibliomics survey of

1The homepage is http://users.ics.tkk.fi/jhollmen/BernoulliMix/
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Chromosome 17 in Resolution 400
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Figure 4.1: DNA copy number aberrations in chromosome 17, res-
olution 400. X = (Xij), Xij ∈ {0, 1}. Each row represents one
sample of the aberrations pattern for a cancer patient and each
column represents one of the chromosome bands (regions). In fig-
ure dark color denotes the presence of aberrations and the white
color denotes the absence of chromosomal aberrations.

838 journal articles during 1992-2002 by hand without using state-of-the-art

text mining techniques [22, 65]. The dataset contained the information about

the chromosomal aberrations of 4590 cancer patients. Each row describes one

sample of the cancer patient while each column identifies one chromosomal

band(region). The dataset is a typical 0-1 dataset where aberrated chromoso-

mal regions were marked with 1 while and the value 0 defines that the chromo-

some band is not aberrated. Chromosomes X and Y were not included in the

experiments because of the lack of data. Patients whose chromosomal band

had not shown any aberrations for the specific chromosome were not included

in the experiments since we are interested in modelling the aberrations, not

their absence. Thus different chromosomes had different number of the sam-

ples. The chromosomal aberrations dataset analyzed in this thesis uses data

containing few samples. Thus, we decided to work chromosomewise because

of the availability of very small number of the data samples to constrain the
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complexity of the mixture models. The original data dimension for the whole

genome ranges from 300 to 850 which will be cumbersome to work with given

the very large dimension compared to the number of samples. On the other

hand, working with each chromosome will be computationally easier as the

largest dimensionality is 63.

Chromosome 17 in Resolution 850
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Figure 4.2: DNA copy number aberrations in chromosome 17, res-
olution 850. X = (Xij), Xij ∈ {0, 1}. Each row represents one
sample of the chromosomal aberrations for a cancer patient and
each column represents one of the chromosome bands (regions). In
figure dark color denotes the presence of aberrations and the white
color denotes the absence of chromosomal aberrations.

A shwon in Figures 4.1 and 4.2, copy number aberrations occur very sparsely

and are often spatially dependent. The original data was in the resolution 400

i.e. there were 393 chromosomal bands (regions) for the entire genome. The

original data was upsampled to resolution 550, 700 and 850 and downsampled

to resolution 300 using the methods discussed in Chapter 3. Bands for the spe-

cific chromosome were extracted and mixture modelling was preformed on each

chromosome. For example: chromosome 1 had 63, 61, 42, 28, and 23 chromoso-

mal bands in resolution 850, 700, 550, 400, and 300 respectively [1]. Similarly,

a different set of data was available in resolution 850 from progenetix.net [78].

39



Chapter 4. Experiments and Results

The data in resolution 850 was different from data in resolution 400. Similar

to the data in the resolution 400, the data in resolution 850 was downsampled

to resolution 300, 400, 550 and 700. Elementwise AND operation over all the

samples in the data results in a zero vector thus necessitating sophisticated

machine learning and data mining methods and techniques for classifying and

profiling aberrations.

The ISCN (ISCN 2009: An International System for Human Cytogenetic

Nomenclature) nomenclature of chromosome, discussed in Appendix A, divides

the chromosome into different resolutions shown in Table 4.1.

S.No Resolution # Regions # Regions in Chr 1

1 300 317 23

2 400 393 28

3 550 555 42

4 700 759 61

5 850 862 63

Table 4.1: Number of Chromosome bands(regions) for 5 different
resolutions of data studied in the thesis. Included as an example
number of bands in Chromosome 1, the largest chromosome.

Thorough study was performed for every chromosome with every resolution

using the finite mixture modelling approach.

4.3 Comparison of Downsampling Methods

The downsampling methods, discussed in Chapter 3, were implemented in

scripts. There were 110 scripts in all for all transformations, one for each

chromosome in 5 different resolutions (# of Chromosomes × # of Resolutions

i.e 22 × 5). Matlab ® [74] was used for scripting. The individual scripts for

downsampling each chromosome takes a file name of the data set in higher

resolution as input and first checks for some errors such as mismatch in the

number of regions of the chromosome in that specific resolution. Data is then

transformed bandwise to lower resolution combining the multiple bands in

higher resolution according to the three different methods proposed in Sec-

tions 3.2.1, 3.2.2, and 3.2.3. The downsampled data from 850 resolution was
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subjected to various tests to access the difference in the results of the down-

sampling methods.

4.3.1 Property Models

Some simple and efficient property models were defined to compare the results

of the three different downsampling procedures.

Column and Row Margins
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Column Margins: Chromosome 17 Resolution 400

Figure 4.3: Comparison of three different downsampling methods:
Example case in chromosome 17 resolution 400. Figure does not
show significant difference in the results of the three methods.

The total number of differences in the dataset was studied with respect to

each row and column margin produced on downsampling from higher resolu-

tion to lower resolution. The total number of differences in each chromosome

band and in each cancer patient was computed and compared between three

different downsampling methods. The results of the three different downsam-

pling process did not show significant differences with respect to the number

of differences in the row and column margins as shown in Figure 4.3 which is
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an example result for chromosome 17 in resolution 400. Figure 4.3 shows that

results produced by three methods are highly similar. In order to scrutinize

the results, mean difference between the number of differences produced by

the three methods in various chromosome bands was computed. The results

for an example case discussed earlier i.e. chromosome 17 in resolution 400 is

shown in the Figure 4.4.
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Figure 4.4: Total difference in data produced by three different
downsampling methods: Example case in chromosome 1 resolution
400. The figure shows presence of differences in some chromosome
regions.

Figure 4.4 suggests that there are differences in the results produced by three

downsampling methods albeit rather minute. Three downsampling methods

produced no differences in some chromosomes such as chromosome 1, 5, 8,

19, 20, 21 and 22 in resolution 700. In contrast, the methods produced some

negligible differences in other chromosomes. Hence with respect to the to-

tal number of differences in row and column margins produced in the coarse

resolution, the three proposed methods are highly similar.
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Figure 4.5: Comparison of three different downsampling methods
with respect to number of aberrations produced.

Total Number of Differences

Similar to the differences in datasets, we studied the total number of aber-

rations present in the downsampled data. Total number of aberrations in

each chromosome was computed and compared between three different down-

sampling methods. The results of the three different downsampling methods

did not show significant differences with respect to the number of aberrations

produced. Figure 4.5 suggests that the three downsampling methods produces

similar results. Furthermore, the mean difference between the number of aber-

rations produced by the three methods in various chromosomes was computed.

Figure 4.6 suggests that there are differences in the results produced by three

downsampling methods, albeit very small. However, the differences between

the methods are not significant when the number of aberrations are considered,

which are significantly high.

4.3.2 Matrix Difference: Frobenius Norm

Property models discussed in Section 4.3.1 demonstrate no significant differ-

ences in the downsampling methods. However, the two methods discussed in

Section 4.3.1 are susceptible to some errors where the number of chromosomal
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Figure 4.6: Difference in aberrations produced by three different
downsampling methods with respect to the number of aberrations
produced in the data.

aberrations are same and also number of chromosomal aberrations does not

change in different methods. For example, the methods discussed Section 4.3.1

do not show difference between the following two datasets.

[

1 0

0 1

]

and

[

0 1

1 0

]

However, the two datasets above are significantly different. In order to cap-

ture these differences, we further analyzed the difference between the different

downsampling methods as the difference between the two resulting matrices

for different methods using standard matrix difference measures. The distance

measure used is the square of the Frobenius norm [79] between two matrices.

In 0-1 matrices, Frobenius norm is essentially the number of cells where the

two matrices differ.

Figure 4.7 suggests that the three downsampling methods produces fairly

similar results. It also suggests that the differences are high in chromosome 1

which is expected because chromosome 1 is the largest chromosome. Differ-

ences are also high in lower resolution compared with higher resolution because

it is the lower resolution where most of the changes take place. The differ-
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Figure 4.7: Comparison of three different downsampling methods:
The difference measure used is scaled Frobenius norm.

ences in the smaller chromosomes especially 20-22 are because of significant

variation in the bands combined. Normally, three bands in finer resolution are

combined in coarser resolution but in small chromosomes, the number of chro-

mosome bands combined is very different thus making it difficult for weighted

and OR-function downsampling method to work. It is to be noted that in the

chromosomes where the differences are larger have larger number of differences

in number of chromosome bands in different resolutions.

4.3.3 Changes in Aberrations

We also calculated the number of cases where the unaberrated band has

changed to the aberrated region in two different methods. Calculating such

differences will also help to measure the closeness of different downsampling

methods. The number of cases where the unaberrated region (represented by

0 in dataset) changes to the aberrated band (represented by 1 in dataset) is

calculated and the results are visualized as shown in the Figure 4.8.

Figure 4.8 exhibits that there are no differences in the number of changing

chromosomal aberrations on two methods i.e. the majority decision and the

OR-function downsampling. On the other hand, noticeable differences can be
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Figure 4.8: Number of unaberrated bands changing to aberrated
bands in different downsampling methods. The X-axis varies in
small intervals with respect to resolution and larger intervals with
respect to the chromosome number. As usual chromosome X and
Y were excluded from the experiment.

observed between OR-function and weighted downsampling as well as between

majority decision and weighted downsampling. Generally, the OR-function

and the majority decision downsampling methods are similar. However, OR-

function downsampling is expected to produce more aberrations in the coarse

resolution than the majority decision. In any case, these findings highly co-

relate with the biological notion that chromosomal aberrations typically cover

large areas, thus producing negligible or difference between OR-function and

majority decision downsampling methods. On the other hand, weighted down-

sampling method is highly effected by length as shown in the Figure 3.5, thus

differing from majority decision and OR-function downsampling methods. The

length is often not that effective measure because ISCN defined the nomen-

clature of chromosome based on distinct specific landmarks such that they are

distinguished during staining [1].

Similar to Section 4.3.1, the mean of difference between the number of the

unaberrated region changing to the aberrated region was also computed and

visualized with the results depicted Figure 4.9. Similar to other matrices for
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Figure 4.9: Mean of difference in number of unaberrated bands
changing to aberrated bands in different downsampling methods.
The X-axis varies in small intervals with respect to resolution and
in larger intervals with respect to the chromosome number.

defining the similarity/dissimilarity of the results of methods, Figure 4.9 shows

negligible differences of cases where the unaberrated band is changed to the

aberrated band in two different downsampling methods. After the results

from Figure 4.8, it can be inferred that some negligible differences shown

in the property models discussed in Section 4.3.1 are the result of weighted

downsampling method.

4.3.4 Frequent Itemsets

Given 0-1 data, D with a set of attributes I1, I2 . . . In and a support σ, a

frequent set is the set F of items of D such that at least a fraction of σ

of the rows of D have 1 in all columns of F [80, 81]. However, the major

problem with frequent itemset is that if an itemset {a, b, c} is frequent then

their subsets are also frequent because of the anti-monotonicity property of

frequent itemsets [82], thus making it unsuitable for comparison and reporting.

On the other hand, maximal frequent itemset can be defined as an itemset

which is frequent but non of its supersets are frequent [83].
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The measure of frequent itemsets also provides a metric for the similarity

measure between the sampled data and original data. Furthermore, our major

aim was to upsample and downsample the data so that the patterns in the

original resolution were retained. Mining maximal frequent itemset in the

context of the mixture modelling of multivariate Bernoulli distribution is two

fold. It has been shown in [65] that maximal frequent itemset can be used to

describe the finite mixture of multivariate Bernoulli distributions compactly

and in a language understandable by the domain experts. In [65], the authors

implemented a mixture of Bernoulli distributions in clustering 0-1 data to

derive frequent itemsets from the cluster-specific data sets and found that

the cluster-specific maximal frequent itemset were significantly different from

those itemsets extracted globally.

Similar to [65], we used MAFIA (MAximal Frequent Itemset Algorithm) [83]

to mine the frequent patterns because other similar algorithms such as Apri-

ori [81] would produce long results which will be difficult to interpret, analyze

and report. The frequency or the threshold was chosen as 0.5 motivated by a

majority voting protocol. Upsampling is simple and is always guaranteed to

retain the frequent itemset although the number of frequent itemset increases

with the exactly the same support. Therefore, they have not been reported.

From Table 4.2, we can see that the maximal frequent itemsets are preserved

during sampling of resolutions. For example, in OR-function downsampled

data in resolution 400 and original data in resolution 850, there is no difference

in the maximal frequent itemset because from Table 3.1 used in upsampling, we

know that items 7, 8, and 9 in resolution 850 represents items 5, 6 and 7. Items

8 to 14 in 850 are combined to form item 8 in resolution 400. Other itemsets

are also formed with similar combinations. Weighted downsampling differs

more than other two types of methods but even for weighted downsampling

method, the difference is not significant. The results of sampling can be seen

more profoundly in integrated datasets where each itemsets in higher resolution

can be defined by the frequent itemsets lower resolution. The differences in

some cases are only seen because support for those itemsets are less; these

differences can be expected because data in lower resolution cannot encompass

all the information in higher resolution.
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Data Resolution Maximal frequent itemsets at
threshold(α)=0.5

Original 400 (A) {11},{12}

Original 850 (B) {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24}

OR-function downsampled
from B to 400 (C)

{5, 6, 7, 8, 9, 10, 11, 12}

Weighted downsampled
from A to 400 (D)

{7, 8}, {5, 6, 7}, {7, 12}, {7, 11},
{8, 9, 10, 11, 12}

Majority Decision down-
sampled from B to 400 (E)

{5, 6, 7, 8, 9, 10, 11, 12 }

Combined in 400 {5, 6, 7}, {6,7,8}, {7, 8, 9, 10, 11},
{7, 8, 11, 12}, {8, 9, 10, 11, 12}

Combined in 850 {7, 8, 9}, {8, 9, 10, 11, 12, 13, 14}, {9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}, {9,
10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24 },
{ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24}

Table 4.2: Maximal frequent itemsets for data in different resolu-
tions. The support, frequency or threshold (α) used is 0.5. Example
case for Chromosome 17.

4.3.5 Motivation for Database Integration

Two sets of original data were available in resolution 400 and 850. Experi-

ments were performed in the original resolution and sampling was performed

to sample the data to different resolutions. Data representing whole genome

was divided into each chromosome. In each chromosome, the the zero vectors

were removed. The cancer patients who did not exbibit chromosomal aber-

ration in a particular chromosome were removed from the data because we

were interested in modelling the chromosomal aberrations of cancer patients

not their absence.

Furthermore, the sample size of data reduces significantly when the data

in resolution 400 is split into each chromosome and samples with all zeros

i.e. zero vectors are removed. This phenomenon is captured by Figure 4.10.

Additionally, upsampling does not increase the number of unique rows. It also

shows that number of samples in upsampled data is significantly less compared
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Figure 4.10: Number of samples of data in resolution 850. Fig-
ure shows the number of samples for three different datasets used
for modelling in this thesis: Upsampled, Downsampled, and Com-
bined.

to the number of samples in downsampled and combined data.

It is important to note that machine learning and data mining algorithms

and methods in most cases are data hungry and require significantly large

amount of data for plausible results. Thus, database integration is important

to work with high dimensional data with small sample size. For example, the

validation technique cross-validation used in this thesis has been shown not to

work very well with small sized data samples in [27, 28]. A simple example of

cross-validation on small sample data is shown in Figure 4.11 as an example

case for chromosome 5 in resolution 550. Experiments with different chromo-

somes have shown that there is a well-defined structure present in data. The

details of model selection procedure are discussed in Sections 4.4.1 and 4.4.2.
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Figure 4.11: Model selection for data in resolution 550. The av-
eraged loglikelihood for training and validation sets in a 10-fold
cross-validation setting for different number of components in chro-
mosome 5 & Resolution 550. The interquartile range(IQR) for 50
different training and validation runs have also been plotted. The
details of the model selection procedure using cross-validation is dis-
cussed in detail in Section 4.4. This example is shown to elaborate
that with few samples of data in high dimension (finer resolution)
machine learning algorithms such as cross-validation does not work
very well.

Same chromosome 5 in the same resolution 550 shows the presence of definite

structure in the data when the database is integrated.

Unlike many real valued data, the size of the 0-1 data seems to be signifi-

cantly large, often large datasets are turned to 0-1 data for the ease of analysis.

For instance, consider the size of some of the benchmark datasets: RETAIL

[36] is 200000 by 20000; KOSARAK is 100000 by 40000 as described and pre-

processed in [35]. One important issue to note is that the main property of
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Figure 4.12: Number of unique samples of data in resolution 400.
Figure shows the number of unique samples of data for three differ-
ent datasets used for modelling in this thesis: Upsampled, Down-
sampled, and Combined.

the 0-1 data is their large dimension. However, dataset at our disposal was

relatively small and the problem was further compounded by the presence of

few unique rows thus making database integration inevitable.

In general 0-1 datasets, even when the data set is large, ratio of unique

rows to the number of samples in the dataset is also approximately 1 i.e. all

of the rows in the data are unique. Figure 4.12 shows the number of unique

rows for the dataset used in the experiments consisting of 22 chromosomes in

4 different resolutions. Figure 4.12 shows that unlike the other 0-1 dataset,

the dataset used in the experiments has very few unique rows. Furthermore,

the number of copies of unique rows are not evenly distributed. Additionally,

the amplification data is more skewed and sparse. For example, element-wise
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AND operation between elements in the same column results in zero vector.

Thus, in this setting, with a very few samples of data, cross-validation can

always suffer from the problem of “unfortunate split”2. When database is

integrated, the number of samples in the dataset increases also increasing the

number of unique samples in the dataset. Thus, experiments were performed

after primarily combining the datasets in different resolutions as well as two

different resolutions independently in order to compare the results.

4.4 Mixture Modelling of Multivariate Bernoulli

Distributions

4.4.1 Model Selection

Model selection is a process of selecting the best model from a set of possible

models that optimally fit the data. It is one of the most challenging tasks in

machine learning and there are no well defined rules to select the best model

and this is an “unsolved” problem in statistics. Often, model selection depends

on the use of some prior information, especially about the data, and ‘the rule

of thumb’3. In other words, the model selection itself can be regarded as “Data

Mining”. A simple prototyping of models and their statistical analysis can be

used to select the model. However, such process will be highly cumbersome.

For example, given a machine learning problem, it is very difficult, if not impos-

sible to select the best method from a myriad of the machine learning method

such as Support Vector Machines [84, 85], Multilayer Perceptions [19, 86], Ex-

treme Learning Machine [87], among many others. In this thesis, the problem

was to analyze copy number aberrations data relevant to cancer. Cancer is

not a single disease but a heterogeneous collection of several diseases. We

decided to work in the probabilistic context and decided to model the data

using a model that possesses clustering capabilities. Furthermore, cancer is

2For example, in a classification problem, if certain class is not represented by training
set, then the model is not trained to classify it thus producing poor results on the future
data.

3Definition from Merriam-Webster Online Dictionary: Rule of thumb - a general principle
regarded as roughly correct but not intended to be scientifically accurate.
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a multifactorial disease. Therefore, mixture modelling was selected to model

the copy number aberrations data because they provide an efficient method of

modelling the heterogeneous population. Furthermore, since the copy number

aberrations data was a high dimensional 0-1 data, the distribution used in

the mixture model is the Bernoulli distribution. However, mixture models are

too complex in bigger dimension in terms of both time and space complex-

ity. Furthermore, the chromosomal aberrations dataset analyzed in this thesis

uses very scarce data as explained in Section 4.2. Thus, we decided to work

chromosomewise because of the availability of very few samples of the data to

constrain the complexity of the mixture models.

4.4.2 Model Structure Selection

After the selection of the model, the solution of one difficult problem is accom-

plished but another one awaits which is the problem of model structure selec-

tion. The model structure selection is the application of statistical methods

for selecting the parameters and hyperparameters of the model. For exam-

ple, given a machine learning problem, we choose to model it with polynomial

curve fitting assuming some prior knowledge that the model is not linear. Even

in polynomial curve fitting: the choice among ax + b, ax2 + bx + c and other

higher order polynomials is an arduous task. The concept of underfitting, over-

fitting, bias-variance dilemma (trade-off) are the central issues to be considered

in model structure selection. These are very important concepts in machine

learning but the thesis does not consider the details of these methods. The

details of these concepts can be acquired from Sections 6.1, 9.1 of [20]; Sections

6.8, 6.9 of [88]; and Sections 2.13, 4.13 of [19]. In this thesis, the model selected

is mixture models. The hyperparameters of mixture models are the number

of mixture components [89]. Therefore, the model structure selection problem

in this thesis is restricted to the selection of number of mixture components

in the mixture model.

The size of the chromosome in terms of number chromosome bands and also

the number of samples varied significantly which are tabulated in Table C.1.

Some chromosomes had greater number of bands and some chromosomes had

lower number of chromosome bands. Data from different resolutions were in-
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dividually subjected to the mixture models. The central problem in this case

is model selection which is to determine the number of components in the

mixture model. We used the 10-fold cross-validation approach to train the

model of different complexities. The exercise was repeated 50 times i.e. for

each mixture component, 50 models were trained using training set and their

performance was evaluated on the test set. It is often recommended to repeat

cross-validation technique a number of times because 10-fold cross-validation

can be seen as a “standard” measure of the performance whereas ten 10-fold

cross-validations would be a “precise” measure of performance [56]. Since EM

algorithm is sensitive to the initializations and the results may differ on the

same data for different initializations and it can susceptible local minima and

the global optimum results are not often guaranteed [90], 50 different models

were trained for each number of components. The number of mixture com-

ponents was varied from 2 to 20 for all chromosomes in all resolutions. The

assumption here is that each chromosome has at least two clusters and more

than 20 clusters overfits the data for each chromosome where the maximum

dimensionality of the data was 63. Validation set for each model is the one re-

maining subset of the data which is not used for training. Total likelihood for

the training data as well as the validation data is calculated and averaged for

each mixture component. We select the model that is able to produce better

generalization capabilities (i.e. the number of components for which the like-

lihood is maximum) taking parsimony into account. In other words, in some

cases, models with lesser mixture components are selected instead of models

with the larger number of mixture components for which likelihood was higher.

We also calculate Interquartile Range(IQR) for training and validation likeli-

hood to analyze the statistical dispersion of the likelihood in different models

for the same number of components. Components, for which the variation

in IQR is high or which shows more dispersion, are not reliable and hence

avoided in most cases. Model selection was performed on all chromosomes as

chromosomewise analysis can reveal interesting facts about the aberrations of

specific chromosomes and guarantees efficient computation & ease of analysis.

Figures 4.13 and 4.14 show model selection procedure for the data in resolution

400 and 850 respectively.

The figure also shows the model selection in case of resolution 400 which
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Figure 4.13: Model selection for the the original data in resolution
400. The averaged loglikelihood for training and validation sets in a
10-fold cross-validation setting for different number of components
in chromosome 17 & Resolution 400. The interquartile range(IQR)
for 50 different training and validation runs have also been plotted.
Here, number of components (J) selected is 6.

downsampled from resolution 850. Figure 4.13 shows that the likelihood is

smoothly increasing function with respect to the number of components. From

Figure 4.13, it can be seen that validation likelihood is maximum when the

number of components is 12, but instead of 12 components, 6 components

was selected. It is to be noted that sometimes complex models overfit the

data and the simple models reduce the time and space complexity. Further-

more, the training and validation likelihood when the number of components

is 6 are -3.5293 and -4.0666. In addition, when the number of components

is 12, the training and validation likelihood are -3.0972 and -3.8956. Hence,

the difference in likelihood is negligible when compared with the efficiency in
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terms of time and space complexity. Furthermore, when the number of com-

ponents is increased, IQR(Inter Quartile Range) shows significant variation.

The variation in IQR is because when the number of components is increased,

samples can be assigned to different clusters in different runs of the k-fold

cross-validation. Additionally, the data in resolution in 400 was upsampled to

resolution 850 and similar approach to select the model was followed.
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Figure 4.14: The averaged loglikelihood for training and validation
sets in a 10-fold Cross-validation setting for different number of
components in chromosome 17 and resolution 850. The interquar-
tile range(IQR) for 10 different training and validation runs have
also been plotted. Here, number of components (J) selected is 6.

Figure 4.14 also shows that the IQR varies significantly from the mean like-

lihood. The choice of the number of components is straightforward because

Figure 4.14 clearly shows a maximum of validation likelihood when the number

of components is 6. Even when the number of components is 6, the variation
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in IQR is also low. However, the variation in IQR can be compensated with

sufficient training which would produce favorable results. Thus, we train dif-

ferent models and select the best one among them as discussed in Section 4.4.2.

The results can be further improved when the size of the dataset is increased

which motivates our upsampling and downsampling strategies for database

integration.

Parameter Estimation

After the selection of model and its hyperparameters are performed, the pa-

rameter estimation is relatively a simple task. Parameter estimation is also

often referred to as model fitting, model training or model learning in machine

learning literature [20, 18]. Consider, for example, in the above case of poly-

nomial curve fitting, assume that we selected the model is ax + b. Now, the

value of a and b can be optimized or learned from the data.

In this thesis, after the number of components are selected, the model is

trained with all the available data to determine the optimal value of the

Bernoulli parameter θ using EM algorithm [29, 31]. In order to achieve the

best results while finally selecting the model after selecting the number of

components, we further train 50 different models of the same complexity (i.e.

the same number of components) to convergence and select the best model in

terms of the likelihood produced on the original data. The value of θ specify

the probability that a random variable takes the value 0 or 1.

The best of the trained models are used to calculate the likelihood on data

as shown Table 4.4. The model was also used to sample the data to be used

in validation using resampling approach as discussed in Section 4.4.6. Fig-

ures 4.15 and 4.16 are the final models trained to convergence for combined

data in resolution 400 and 850 respectively. Similarity of the models can be

tracked visually from the model visualization as in Figures 4.15 and 4.16. For

example, Component 6 in Figure 4.15 corresponds to Component 1 in 4.16.

Similarly, Component 1 in Figure 4.15 corresponds to Component 4 in Fig-

ure 4.16.
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Figure 4.15: Visualization of one of the trained models for chro-
mosome 17 in resolution 400 for combined data. Here the selected
number of components is 6 which corresponds to the rows in the
model. The first separate column determine the mixing proportions
of each mixture component. The remaining 12 columns determines
the parameters θji. Darker colors denotes the higher values of the
parameters.

4.4.3 Computational Complexity

The major drawback in using mixture models is the computational complexity

of training the mixture models. Normally, training mixture models are com-

putationally expensive when compared with other parametric (such as Poisson

distribution [38]) as well as non-parametric (such as k-means [44, 45]) methods.

Similar to other machine learning methods, computational complexity of the

mixture model also increases with increasing dimension which is determined

by resolution in our case. Thus, computational complexity was also estimated

for each resolution for the selected number of components. As shown in the

Table 4.3, the computational complexity increases in the fine resolution. To

estimate the training time, fifty different models are trained until ten iterations

and the mean of the result is taken as final training time. Similarly, likelihood
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Figure 4.16: Visualization of one of the trained models for chro-
mosome 17 in resolution 850 for combined data. Here the selected
number of components is 6 which corresponds to the rows in the
model. The first separate column determines the mixing propor-
tions of each mixture component. The remaining 24 columns de-
termine the parameters θji. Darker colors denotes the higher values
of the parameters.

Chromosome 17

Data Resolution # of Samples
Time in Seconds

Training Testing

Original in 400(A) 342 0.25 0.06

Original in 850(B) 2716 0.43 0.30

Downsampled to 400 from B(C) 2716 1.12 0.20

Upsampled to 850 from A(D) 342 2.16 0.08

Combined in 400(A+C) 3058 1.43 0.19

Combined in 850(B+D) 3058 2.51 0.32

Table 4.3: Computational complexity for training and testing of
a single mixture model with appropriate number of mixture com-
ponents as decided in Table 4.4. Experiments are performed on
chromosome 17 and time is calculated in seconds. X denotes the
number of data samples. The hardware used is Intel Core2Duo
2.00GHz CPU with a memory of 3 GB.

is calculated for fifty different models trained to calculate the training time and

the mean of the results is reported. Experiments with resolution 850 required
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approximately twice the time required for resolution 400. Furthermore, from

Table 4.4, we also know that number of components required is high when the

resolution is increased but the likelihood decreases. In addition, the curves

are smoother in Figure 4.13 compared with Figure 4.14. This phenomenon

is because of the intrinsic problems of working with high dimensional data

arising in fine resolution, the phenomenon is often referred to as the ‘curse

of dimensionality ’ [91]. These results suggest that data in lower resolution

is preferred but lower resolution does not capture all the available biological

information. Thus, there is a trade-off between the two.

4.4.4 Experimental Design

Figure 4.17: The overall experimental procedure in this thesis.

Experimental procedure is as depicted in Figure 4.17 shows that there are

two sets of data in two different resolutions: 400 and 850. We use upsampling

and downsampling to integrate the data. We then model the data using mix-

ture models. We also model the data individually without integration so that

we can compare the results when the database is integrated. We use 10-fold

cross-validation repeated fifty times to select the number of components in

the mixture model. After selecting the number of components, fifty different

models were trained to convergence and best of the trained models in terms of

likelihood is taken as the final model for the data. Since the mixture models
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are generative models, we sample the data from the trained mixture models.

We then than use the same model selection approach to the sampled data after

upsampling and downsampling so that we can compare the results. We also

compare frequent patterns in the original and the sampled data to evaluate

whether our sampling and modelling effort has preserved the overall structure

in the data as well as the frequent patterns in the data.

4.4.5 Results

The major aim of upsampling and downsampling was to aid in the integration

of databases. The clinical aspects regarding the classification of cancer with

mixture models is already established in [22] and [64]. Thus, data in differ-

ent resolution are integrated after upsampling and downsampling and model

selection was performed. Table 4.4 summarizes the results of the experiments

on chromosome 17 in different resolutions. To calculate the Likelihood 50

different models were trained to convergence and likelihood of the data was

calculated for each model and the mean of the results are reported.

Data Resolution Components (J) Likelihood

Original in 400(A) 6 -3.39

Original in 850(B) 8 -4.53

Downsampled to 400 from B(C) 7 -3.27

Upsampled to 850 from A(D) 8 -4.31

Combined in 400(A+C) 6 -3.48

Combined in 850(B+D) 6 -5.20

Table 4.4: Results of experiments on chromosome 17 in different
resolutions showing the number of components required to fit the
data along with their respective likelihood. The results for other
chromosomes are summarized in Appendix B.

Table 4.4 shows the number of components required to fit the data differs in

different resolution. The likelihood of data in fine resolution is lower than the

likelihood of the data in the coarse resolution when the number of components

are the same. This phenomenon can be attributed to the curse of dimension-

ality [91]. For example, the dimensionality of data in resolution 400 and 850

differs by 12 in chromosome 17 but likelihood is lesser even when the number
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of components is equal. For the original data in resolution 400 and 850, the dif-

ference in number of parameters of the model is 6 ∗ (1 + 26)−6 ∗ (1 + 18) = 48

which invites significant amount of computational complexity. The increased

complexity however does not produce corresponding the increase in the like-

lihood. With increasing samples, the number of components is not increased

because the complexity of mixture models depends on the complexity of the

problem being solved, not with the size of dataset. Table 4.5 summarizes the

final results of the experiments in all chromosomes.

Upsampled Data

Resolution
# of Components Log Likelihood

Mean Mode Std. Dev. Mean Mode Std. Dev.

400 5.1363 4 1.3200 -4.1170 -6.8321 1.3194

550 5.8181 5 1.4354 -5.6478 -12.925 3.3085

700 5.6818 5 1.6442 -9.3383 -21.0159 5.6227

850 6.4091 8 1.8685 -10.2319 -20.7890 6.2510

Downsampled Data

Resolution
# of Components Log Likelihood

Mean Mode Std. Dev. Mean Mode Std. Dev.

400 6.1818 7 0.9579 -4.3354 -8.0169 1.7914

550 6.8181 7 1.1396 -5.4993 -11.7850 2.8190

700 6.8181 7 0.9579 -7.2905 -13.4629 3.8663

850 7.0000 6 1.2344 -8.1149 -15.0200 4.0383

Combined Data

Resolution
# of Components Log Likelihood

Mean Mode Std. Dev. Mean Mode Std. Dev.

400 6.2272 6 1.1097 -4.3801 -8.1897 1.7546

550 6.6818 6 1.1291 -5.6528 -11.6969 2.8333

700 6.6818 7 1.0413 -7.6022 -13.4560 4.0573

850 6.8181 7 1.1396 -8.3920 -16.5590 4.2943

Table 4.5: Summary of results of experiments on all showing the
number of components required to fit the data along with their
respective likelihood. Here Std. Dev. is the standard deviation
(σ.) The details of the results each chromosome are tabulated in
Appendix B.

Table 4.5 shows that the number of components selected for the data is
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highly co-related with the data resolution: the finer the resolution the higher

the number of components required. Increasing resolutions require more num-

ber of components and the likelihood of the data also decreases. This phe-

nomenon can be attributed to the curse of dimensionality [91]. The difference

in likelihood showing poorer fit to the data is clearly captured by the increas-

ing standard deviation (σ) where in each of the three cases of three differ-

ent datasets, the standard deviation for the likelihood increases significantly.

There is only small differences in selection of number of components where

as there is a significant difference in the likelihood of the final model. This

behavior can also be attributed to the fact that the models selected in our case

were parsimonious models. The models of higher complexity were not selected

even if it produced higher validation likelihood for the fear of overfitting and

computational & space complexity of complex models. Especially models of

complexity greater than ten were discarded. Furthermore, similarity in the

number of components also shows that mixture models learns the structure of

data relatively well although it is constrained by the increasing dimensionality

of the data in finer resolution.

In order to capture the notion of decreasing number the likelihood of data

in 22 different chromosomes in 4 different resolutions, we plot the parallel co-

ordinates of the log-likelihood in all three datasets: upsampled, downsampled,

and combined. The plots for the three cases are similar, therefore, only the

plot for combined data has been shown in Figure 4.18. The trend of decreasing

likelihood can be easily captured from Figure 4.18. In few cases, such as

chromosome 22 and other small chromosomes4, the trend in decrease is not

significant because the difference in number of chromosome bands (regions) is

negligible in the smaller chromosomes.

The computational complexity increases in the finer resolution. Moreover,

high-resolution data incorporates significant amount of noise thus producing

explosion of redundant patterns thus requiring more number of components

to optimally fit the data. The problem with such redundant patterns can

be remedied by downsampling the data if the information loss is insignificant

4The chromosomes are numbered by their size with only one exception i.e. chromosome
21 is smallest instead of chromosome 22. Thus, chromosome 21 is smallest chromosome
while chromosome 1 is the largest of the chromosomes.
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Figure 4.18: Parallel co-ordinates plot for the likelihood of com-
bined data of 22 different chromosomes in 4 different resolutions.

during downsampling.

4.4.6 Validation Using Data Resampling approach

This experiments with the mixture models also show that patterns present in

the fine resolution of the data are efficiently and effectively preserved in coarse

resolution. Since the mixture models are generative models, we can sample

the data from the trained models. Thus, in order to validate the model and

determine if it has been able to extract the original structure in the data,

we sample the data where the number of samples in the sampled data are

equal to the number of samples used in training. We repeat the same model

selection procedure as discussed in Section 4.4. It has been shown in [33] that

the generative mixture models preserves the statistically significant patterns

in multiresolution 0-1 data. From Figure 4.19, we can see that the number of
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Figure 4.19: The averaged loglikelihood for training and validation
sets in a 10-fold Cross-validation setting for different number of
components in chromosome 17 and resolution 400 in resampled data
from the model of combined data. The interquartile range(IQR)
for 10 different training and validation runs have also been plotted.
The number of components selected here is 6.

selected components distributions are similar to the original data including the

variations in the likelihood with increasing number of components. However,

as expected the curve is more smooth. As with all the other experimental

procedure, this validation using the data resampling approach was performed

in all the chromosomes. There were very few discrepancies which occurred

especially in upsampled data. The reason being that there were very few

samples of the data in upsampling. We further train the mixture model on the

resampled data using the selected number of components. The model trained

on the resampled data is also used to calculate the likelihood on the original

data.
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Data Resolution J
Likelihood in

Original Resampled

Original in 400(A) 6 -3.70 -3.32

Original in 850(B) 8 -4.57 -4.66

Downsampled to 400 from B(C) 7 -3.28 -3.26

Upsampled to 850 from A(D) 8 -4.72 -4.30

Combined in 400(A+C) 6 -3.49 -3.49

Combined in 850(B+D) 6 -5.69 -5.61

Table 4.6: Results of experiments on chromosome 17 showing the
number of components required to fit the data along with their
respective likelihood for the data sampled from the mixture model.
J denotes the number of components selected.

An example result reported in Table 4.6 shows that the result is very similar

to the original data. The results for other chromosomes were also very similar.

The model trained from the resampled data is further used to calculate the

likelihood on the original data. The likelihood decreases but the decease is

negligible showing that our parsimonious mixture models efficiently captures

the overall structure of the data.
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Chapter 5

Summary and Conclusion

“ Now this is not the end. It is not even the

beginning of the end. But it is, perhaps, the

end of the beginning. ”— Sir Winston Churchill

After Victory at El Alamein (1942)

Synopsis

This chapter presents a summary of the work, draws conclusions

from experimental results and discusses future areas of research.

5.1 Summary and Conclusions

This thesis studied the problem of multiresolution data in chromosomal aber-

ration. Two datasets were available in different resolutions. In order to work

with the multiple resolutions of the data, a upsampling and three different

downsampling methods were proposed and their results were studied. The

results were plausible and fairly consistent. The resulting data in different

resolutions efficiently captures the information of data in different resolutions.

Significant patterns and overall structure of the data were effectively preserved

during the data transformation process. The major aim of data transforma-

tion across different resolutions was to aid in the integration of databases.
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Thus, after transformation to different resolutions, data was integrated for the

analysis in one resolution.

Mixture models were then applied to the data in different resolutions for all

three different types of data: upsampled, downsampled, and combined. We

used 10-fold cross validation approach for model selection in mixture models.

The analysis of the data was performed chromosomewise in different resolu-

tions. The results suggested that number of components required to fit the

data differs across resolutions and increasing resolutions require more number

of components. Furthermore, the likelihood of the model on finer resolution is

poorer than that of coarse resolution although the data is the same but rep-

resentation is different. Moreover, the number of components required to the

fit the data is increased. The performance of the algorithm in integrated data

was better than the ones performed individually in two different resolutions

thus showing the importance of our data transformation process.

The trained mixture models can be used in cancer classification and cluster-

ing. The clustering results of mixture models possess high clinical significance

as shown in [22] and [64]. Furthermore, validation by resampling showed that

mixture models trained parsimoniously preserve the original structure of the

data. There were only negligible discrepancies on the results of the mixture

models on the data sampled from the model. The computational complexity

increases with increasing resolution. Experiments with resolution 850 required

approximately twice the time required for the resolution 400.
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5.2 Future Work

Chromosome

Cytogenetic Band

Different Resolutions

Genes

DNA Sequence

Masters
Thesis

Future
Studies

Figure 5.1: Schematic representation of problem studied in the
Master’s thesis and its seamless extension to the problem to be
studied in future.

The multiresolution problem was studied only at chromosome level and the

data transformation process was defined only in different resolutions of the

chromosome. In the future work, the data transformation process can be de-

fined until the very minute biological details such as genes and DNA sequences.

Upsampling technique used in the thesis also needs further investigation and

inferencing techniques can be implemented. In further work the probabilistic

models, such as mixture models and probabilistic time series models, such as

Hidden Markov Models(HMMs) can be extended to cope with data in multiple

resolutions.
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Appendix A

Chromosome Nomenclature

“ If people never did silly things, nothing intelli-

gent would ever get done. ”— Ludwig Wittgenstein

Austrian philosopher (1889 - 1951)

There is a standardized naming scheme or nomenclature to address the dif-

ferent areas in the genome defined by the International System for Human

Cytogenetic Nomenclature (ISCN) [1]. This naming scheme is used by the

domain experts and found in the literature when addressing the parts of the

genome. The history of chromosome nomenclature dates back to 1971 when

a meeting in Paris decided the basic nomenclature for the bands in the chro-

mosome. Hence, the nomenclature is often referred to as Paris nomenclature

and some names have been adopted from French.

A chromosome is divided into two arms by the centromere: the p arm which

stands for petit (meaning small in French) is the longer arm and the arm q

which stands for queue. The regions are named q1, q2, q3 or p1, p2, p3 start-

ing from the centromere and moving towards the edges. Regions are often

separated by specific and consistent landmarks which possess distinct morpho-

logical characters such as the ends of the chromosome arms, the centromere

and certain bands. The regions are further divided into bands such as q11

(pronounced as ‘q-one-one’ not ‘q-eleven’). The bands are further divided into

sub-bands such as q11.1 or even sub-sub bands such as q11.11. This naming

scheme is hierarchical and irregular.
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Figure A.1: Nomenclature of Chromosome bands of Chromosome
17 in resolution 400.

An example of chromosome nomenclature is shown in Figure A.1 which

is an example case in chromosome 17. For example, area 17q21.32 means

chromosome 17, arm ‘Q’, region 21, band 3 and sub-band 2. It is important

to note that length of each region, band and sub-band varies.

ISCN has also defined Ideograms for G-banding patterns for normal human

chromosomes at five different resolutions [1]. Five different resolutions of chro-

mosomes mean that a chromosome is divided into different parts in different

resolutions. In resolution 400, for example, the chromosome is divided into

393 different parts and in resolution 850, chromosome is divided in 862 dif-

ferent parts. With respect to the chromosome bands region q21 in resolution

400, for example, is divided into q21.1, q21.2, q21.31, q21.32 and q21.33 in

resolution 850. However, region q22 in resolution 400 remains undivided in

resolution 850 as well. The division of the chromosome bands is determined

by the resolution of naming scheme which depends on the properties of the

genome.
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Appendix B

Results on Each Chromosome

“ There is no such thing as failure. There are

only results. ”— Tony Robbins

American self-help author(1960-)

Synopsis

This chapter presents a summary of results of experiments on

all 22 chromosomes. Number of components required to fit the data

(J) along with their respective likelihood (L) in all three types of

data: upsampled, downsampled and combined.

Chromosome 1

Resolution
Upsampled Downsampled Combined

J L J L J L

400 6 -5.9194 7 -7.0697 7 -7.0344

550 7 -12.9252 8 -9.9172 8 -9.9790

700 7 -16.4747 9 -12.399 8 -13.1283

850 7 -14.6505 5 -13.065 7 -13.7521
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Chromosome 2

Resolution
Upsampled Downsampled Combined

J L J L J L

400 4 -6.0295 7 -8.0169 6 -8.1897

550 5 -11.8613 7 -11.7851 7 -11.6974

700 7 -16.5517 7 -13.4636 7 -13.4568

850 7 -20.3705 7 -15.0203 7 -16.5597

Chromosome 3

Resolution
Upsampled Downsampled Combined

J L J L J L

400 4 -6.2442 6 -7.0561 7 -6.7363

550 7 -7.6133 6 -8.7447 7 -8.4167

700 4 -10.4383 7 -10.5652 6 -11.2252

850 7 -12.4494 7 -11.9871 7 -12.9220

Chromosome 4

Resolution
Upsampled Downsampled Combined

J L J L J L

400 6 -5.5425 7 -6.7628 8 -6.5087

550 4 -7.3582 6 -6.9300 8 -7.1889

700 3 -14.3333 7 -11.7569 7 -12.3751

850 6 -14.3317 6 -11.3934 7 -11.6412

Chromosome 5

Resolution
Upsampled Downsampled Combined

J L J L J L

400 5 -3.8016 7 -5.2970 7 -5.2339

550 4 -12.158 8 -9.3618 6 -9.5914

700 8 -21.0161 7 -12.6904 7 -12.4653

850 6 -20.7898 6 -12.8497 7 -13.0176
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Chromosome 6

Resolution
Upsampled Downsampled Combined

J L J L J L

400 3 -6.8321 7 -6.0988 6 -6.4244

550 5 -9.3474 7 -8.2348 6 -8.8388

700 4 -14.9753 6 -10.317 6 -11.9083

850 6 -17.0915 6 -12.560 5 -13.1997

Chromosome 7

Resolution
Upsampled Downsampled Combined

J L J L J L

400 7 -4.7596 7 -4.4072 6 -4.8041

550 7 -6.4318 7 -5.6954 7 -5.9767

700 5 -12.160 7 -7.5511 5 -8.8348

850 4 -18.9840 4 -8.6133 7 -9.7109

Chromosome 8

Resolution
Upsampled Downsampled Combined

J L J L J L

400 4 -4.9276 6 -4.1155 6 -4.3724

550 4 -6.2317 7 -4.9172 6 -5.3038

700 4 -10.5181 7 -7.1678 7 -7.4469

850 8 -8.1046 8 -7.1619 7 -7.4235

Chromosome 9

Resolution
Upsampled Downsampled Combined

J L J L J L

400 6 -3.8209 7 -4.3096 5 -4.7419

550 5 -5.2903 7 -4.9811 6 -5.5177

700 8 -10.620 6 -8.6071 5 -9.5910

850 7 -10.0603 7 -9.5175 6 -9.5272
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Chromosome 10

Resolution
Upsampled Downsampled Combined

J L J L J L

400 8 -3.2834 6 -4.3964 6 -4.3978

550 8 -2.7821 7 -6.3721 7 -6.2640

700 8 -8.8074 8 -8.2315 6 -9.0516

850 8 -13.3051 8 -11.1141 6 -11.0203

Chromosome 11

Resolution
Upsampled Downsampled Combined

J L J L J L

400 4 -3.6813 6 -4.7850 6 -4.7648

550 8 -3.9603 8 -7.5050 6 -8.1162

700 4 -15.6520 7 -11.1570 6 -11.4460

850 4 -13.3610 4 -11.2810 9 -11.4400

Chromosome 12

Resolution
Upsampled Downsampled Combined

J L J L J L

400 6 -4.1444 7 -4.6736 8 -4.6166

550 8 -5.0504 8 -6.2282 8 -6.3146

700 6 -13.9440 7 -10.961 9 -10.5580

850 5 -16.9440 5 -10.738 10 -10.7330

Chromosome 13

Resolution
Upsampled Downsampled Combined

J L J L J L

400 5 -3.6969 6 -3.4472 7 -3.3926

550 5 -4.3378 8 -3.8797 9 -3.7812

700 9 -3.9688 7 -4.7221 8 -4.6245

850 6 -8.7558 6 -7.3815 6 -7.9231
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Chromosome 14

Resolution
Upsampled Downsampled Combined

J L J L J L

400 5 -3.7348 6 -3.4965 6 -3.4845

550 5 -4.3009 6 -3.7693 8 -3.6269

700 7 -4.6961 7 -4.3075 7 -4.3181

850 4 -7.6186 4 -6.0092 7 -5.6381

Chromosome 15

Resolution
Upsampled Downsampled Combined

J L J L J L

400 6 -3.1646 5 -3.8836 8 -3.4694

550 4 -4.9117 9 -4.1355 7 -4.4979

700 5 -4.8904 9 -4.4926 7 -4.8368

850 8 -4.3434 8 -6.3936 8 -5.5853

Chromosome 16

Resolution
Upsampled Downsampled Combined

J L J L J L

400 5 -3.5699 4 -3.7158 6 -3.3564

550 7 -3.1739 6 -3.3044 6 -3.3510

700 5 -4.7573 6 -4.0875 6 -4.1563

850 11 -3.3864 11 -4.5890 6 -4.6062

Chromosome 17

Resolution
Upsampled Downsampled Combined

J L J L J L

400 6 -3.3910 7 -3.2701 6 -3.4884

550 8 -3.2570 7 -3.4897 7 -3.5734

700 6 -4.4526 6 -4.7788 8 -4.4173

850 8 -4.3136 8 -4.5374 6 -5.2015
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Chromosome 18

Resolution
Upsampled Downsampled Combined

J L J L J L

400 4 -3.4651 7 -2.5073 6 -2.7273

550 5 -3.5862 7 -3.0942 6 -3.2695

700 6 -3.5142 6 -3.2159 7 -3.2043

850 9 -3.6741 9 -3.8413 7 -3.7792

Chromosome 19

Resolution
Upsampled Downsampled Combined

J L J L J L

400 3 -3.7135 6 -2.4045 6 -2.5358

550 5 -2.8951 6 -2.4154 7 -2.4565

700 4 -5.1835 6 -2.9831 7 -3.0044

850 4 -4.0183 4 -3.0227 5 -3.3670

Chromosome 20

Resolution
Upsampled Downsampled Combined

J L J L J L

400 5 -2.9799 6 -2.4055 6 -2.5126

550 6 -2.9034 6 -2.2939 6 -2.5126

700 5 -3.6122 7 -2.6078 6 -2.9454

850 5 -4.0085 5 -3.1918 7 -3.1907

Chromosome 21

Resolution
Upsampled Downsampled Combined

J L J L J L

400 4 -1.6774 5 -1.5461 5 -1.6076

550 6 -1.6447 4 -1.8109 5 -1.7402

700 5 -2.1391 5 -1.9207 7 -1.7489

850 5 -2.1391 5 -1.8478 6 -2.0233
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Chromosome 22

Resolution
Upsampled Downsampled Combined

J L J L J L

400 7 -2.1946 4 -1.7142 3 -1.9641

550 7 -2.2315 5 -2.1204 4 -2.3481

700 7 -2.7416 6 -2.4106 5 -2.5080

850 8 -2.4068 8 -2.4156 7 -2.3680
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Appendix C

Datasets

“ Although we often hear that data speak for them-

selves, their voices can be soft and sly. ”— F. Mosteller, S. Fienberg, R. Rourke

from Beginning Statistics with Data Analysis

Synopsis

This chapter presents the visualization of the dataset used in

this thesis. There were two different chromosomal aberrations

dataset in two different resolutions: 400 and 850. Here, the chro-

mosomal aberrations in resolution 400 is depicted for the whole

genome while the chromosomal aberrations for dataset in resolu-

tion 850 is omitted because of large dimension of dataset. The

chapter also tabulates variations in the number of chromosome

bands (regions) across different resolutions.
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Figure C.1: Genome in Resolution 400. X-axis are spatial co-
ordinates of the chromosome regions. In resolution 400, there are
393 different regions. Y-axis are the cancer patients numbering
4590. Each row represents one sample of the aberrations pattern
for a cancer patient and each column represents one of the chro-
mosome bands (regions). X = (Xij), Xij ∈ {0, 1}. In figure dark
color denotes the presence of aberrations and the white color de-
notes the absence of chromosomal aberrations. The data is very
sparse and skewed. For example, Elementwise AND operation over
all the samples in the data results in a zero vector.
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Chromosome
Resolution

400 550 700 850

1 28 42 61 63

2 30 40 50 62

3 27 36 50 62

4 26 30 45 47

5 21 33 43 45

6 23 33 44 48

7 18 26 34 44

8 18 26 40 40

9 16 22 39 43

10 14 28 34 42

11 15 30 34 36

12 15 26 39 41

13 14 20 24 36

14 14 18 24 32

15 16 22 24 32

16 15 15 21 25

17 12 14 22 24

18 9 14 16 20

19 11 11 19 19

20 10 10 18 20

21 8 10 12 14

22 8 12 16 16

X 19 28 38 40

Y 6 10 11 11

Table C.1: Variation of number of chromosome bands in each chro-
mosome in four different resolutions. Table captures the differences
in the number of chromosome bands across resolutions. Table also
shows that some of the chromosomes in two different resolutions
have the same number of chromosome bands. For example, chro-
mosome 19 has 11 bands in resolution 400 & 550 and 19 bands in
resolution 700 & 850.
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